Density dependent QCD effects in pp collisions

Andreas Morsch CERN

30th anniversary of China-ALICE cooperation

- ... I have known Prof. Daicui Zhou even a bit longer
- Later on, pleasure to cooperate / interact with other CCNU members
 - Yaxian Mao, Xiaoming Zhang
 - Xiaowen Ren (@CERN), Lang Xu, Feng Fan, ...during their PhD student time
- For the talk I concentrate on purpose on subjects that ...
 - allow to expose their work in a broader context
 - and to highlight some future perspectives

Interest in pp from Heavy Ion Physics perspective

laboratory for sub-fm energy density fluctuations

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

laboratory for high-density QCD

 $\epsilon \approx$ 10 GeV/fm³ for 10x mean multiplicity, similar to Pb-Pb

enhancements even at lowest multiplicity strange and heavy flavor baryons challenge: yield modifications of hard probes

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

Heavy Ion Physics and QGP

pp as a reference system

Underlying Event hard-soft correlations

insights for centrality determination (N_{coll}) in p-Pb and Pb-Pb

High density pp at LHC from pQCD perspective

- High initial densities can be produced by **multiple parton-parton interactions (MPI)**
- Straightforward interpretation of pQCD $\sigma_{2\rightarrow 2} > \sigma_{tot}$
- Number of $2 \rightarrow 2$ scatterings per event assuming naïve **factorization**:

At LHC multiple hard scatterings at perturbative scales ~5 per minimum bias collision

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

Integrated hard cross-section above cut-off *p*_{Tmin}

Jet Pedestal effect and pp centrality

- $\langle n^{\text{hard}} \rangle = T_{\text{pp}}(b)\sigma_{\text{hard}}$
- High p_T objects bias towards smaller b where probability for additional interactions is larger \rightarrow increased UE activity.
- Constrain in MPI models radial parton distribution in proton

Pedestal becomes trench for large rapidity separation

• Correlation between 0-deg energy and leading particle p_T

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

Correlations of signals separated by 8 units of rapidity show that an initial state effect is observed

Pedestal and multiplicity fluctuations are related

- Impact parameter variations also determine shape of multiplicity distribution ("shoulder")
 - characterised by normalised second moment C_2
- Jet Pedestal and multiplicity fluctuations increase with \sqrt{s}
- They are similar in size, when properly normalised
- Relation via impact parameter fluctuations

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

normalized pedestal height

$$C_2 = \frac{\langle N^2 \rangle}{\langle N \rangle^2}$$
 = normalized jet pedestal ≈ 2

2.4 x MB 2.1 x MB

2 x MB

Fluctuations within the transverse region

- Leading particle > 5 GeV/c restricts impact parameter variation to small values
 - => reduced multiplicity fluctuation in transverse region wrt MinBias
 - from Pythia 8: $C_2^{pedestal} \approx C_3^{MPI}/(C_2^{MPI})^2 \approx 1.4 < C_2^{MB}$

EbyE Separation into TransMIN / TransMAX Region

Thesis Feng Fan using KNO scaling variables Trans-max region $\langle N_{ch}^{t-max} \rangle P(N_{ch}^{t-max})$ $5 \le p_{\tau}^{\text{trig}} \le 40 \text{ GeV}/c$ 10 $p_{\perp} \ge 0.5 \text{ GeV}/c, |\eta| < 0.8$ 10⁻² 10^{-3} **ALICE Preliminary** "TransMAX" → pp √s = 2.76 TeV → pp √s = 5.02 TeV 10^{-4} --- pp √s = 7 TeV → pp \sqrt{s} = 13 TeV Ratio to 7 TeV 3 5 6 $N_{\rm ch}^{t-max}/\langle N_{\rm ch}^{t-max}\rangle$ ALI-PREL-565075

- Expect larger sensitivity to hard contribution (ISR/FRS) in the MAX region
- KNO scaling holds for both up to $N/\langle N \rangle \approx 4$

Origin of very high multiplicity events

PYTHIA8.230, pp $\sqrt{s} = 13$ TeV, nondiffractive events

- Very high multiplicity events are not anymore explained by centrality
- Mainly statistical fluctuations.

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

11

- Hard probe itself contributes always to some extent to the measured event multiplicity
- Strong deviation from linearity due to autocorrelation effects?
 - plus additional more interesting density effects?
- Clear dependence on hardness and no dependence on particle species at high p_{T}

12

How to meet the challenge Accept

Deny

Isotropic top

Embrace

Measure multiplicity dependence and correlations for the same observable

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

Event Classification

Rapidity gap, Transverse Region

Talk by Antonio Ortiz Velasquez, Wed 23/10

Should be focus for Run 3, if we want to continue with Yield vs Multiplicity measurements

Phys.Rev.D 107 (2023) 7

Avoid bias by using transverse region as event activity estimator

S. Weber et al., EPJC, 79 (2019)

- In MC: R_T estimator removes bias for all p_T bins
- 0-bin (signal free bin) is important for the correct normalisation
 - use random azimuth direction for this bin ("random cones")
- Has not been exploited so far

Production of \pi, K, p as a function of p_T and R_T

 Constrained by normalisation to events with trigger particle. • Trigger particle as function of R_{T} has not been studied.

Particle production inside / outside jet

- UE \approx MB for effects vs p_T seen in many measurements
- Expected if MPIs approximately factorise (i.e. probability of an interaction does not depend on the others)
- However, it is not necessarily the case that if an effect is not present in a jet or (towards region) that it is not related to parton fragmentation
- Reason: jet-tag introduces an additional scale not present in the inclusive measurements.
- Need refined definition of "out-of-jet production"

Particle production from fragmentation

- Fragmentation yield depends mainly on momentum fraction $\langle z \rangle = p_T / E_{iet}$
- For Λ inside jets (previous slide), $\langle z \rangle$ is small and increase with p_T
- related to steepness of p_T spectrum

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

• It is expected to be high ($\langle z \rangle = 0.7-0.8$) and approximately constant for the inclusive selection = fragmentation bias

z from p_T weighted Di-hadron correlation

- $\langle z \rangle_{DHC}$ can be only be a proxy for the real $\langle z \rangle$
- However, expected difference between inclusive and jet measurements are large
- Does also work for multiplicity dependent measurements
- Expect additional constraints on models.

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

Analysis Lang Xu

Strangeness enhancement using angular correlations

Might also help to understand appearance of strangeness enhancement effects in the towards region when lowering the trigger cut

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024

19

- Measurements of multiplicity distribution in the underlying event of hard processes help to better understand the production mechanisms of high multiplicity events in pp collisions.
 - Important contributions from CCNU members (R_T distributions)
- Prospects for improving measurements of particle yields vs multiplicity
 - Reduce auto-correlation bias
 - by combination with angular correlation measurements
 - use R_T as classifier for the trigger yield
 - ... or event classification (see talk Antonio Ortiz)
 - Aim for improved sensitivity to particle production mechanisms ("bulk" vs jet)
 - complementing present "out-of-jet" definition with mean momentum fraction measurements

Summary

