Andreas Morsch CERN

Density dependent QCD effects in pp collisions

30th anniversary of China-ALICE cooperation

- ... I have known Prof. Daicui Zhou even a bit longer
- Later on, pleasure to cooperate / interact with other CCNU members
	- Yaxian Mao, Xiaoming Zhang
	- Xiaowen Ren (@CERN), Lang Xu, Feng Fan, ...during their PhD student time
- For the talk I concentrate on purpose on subjects that ...
	- allow to expose their work in a broader context
	- and to highlight some future perspectives

Interest in pp from Heavy Ion Physics perspective

reference system laboratory for sub-fm energy density fluctuations

laboratory for high-density QCD

 $\epsilon \approx 10$ GeV/fm³ for 10x mean multiplicity, similar to Pb-Pb

Underlying Event collectivity signals

Heavy Ion Physics and QGP

pp as a reference system

insights for centrality determination (Ncoll) in p-Pb and Pb-Pb

enhancements even at lowest multiplicity strange and heavy flavor baryons challenge: yield modifications of hard probes

Andreas Morsch, Workshop on "Advances, Innovations, and Prospects in High-Energy Nuclear Physics", Wuhan, China, October 19-24, 2024 4

High density pp at LHC from pQCD perspective

Integrated hard cross-section above cut-off p_{Tmin}

- High initial densities can be produced by multiple parton-parton interactions (MPI)
- Straightforward interpretation of pQCD $\sigma_{2\rightarrow 2} > \sigma_{\text{tot}}$
- Number of 2→2 scatterings per event assuming naïve factorization:

At LHC multiple hard scatterings at perturbative scales ~5 per minimum bias collision

Jet Pedestal effect and pp centrality

- *n* \rangle $\!=$ $\! T_{\rm pp}$ (*b*) $\sigma_{\rm hard}$
- \bullet High p_T objects bias towards smaller b where probability for additional interactions is larger \to increased UE activity.
- Constrain in MPI models radial parton distribution in proton

Pedestal becomes trench for large rapidity separation

• Correlation between 0-deg energy and leading particle p_T

Correlations of signals separated by 8 units of rapidity show that an initial state effect is observed

- Impact parameter variations also determine shape of multiplicity distribution ("shoulder")
	- characterised by normalised second moment *C*²
- Jet Pedestal and multiplicity fluctuations increase with \sqrt{s}
- They are similar in size, when properly normalised
- Relation via impact parameter fluctuations

Pedestal and multiplicity fluctuations are related

2.4 x MB 2.1 x MB

2 x MB

$$
C_2 = \frac{\langle N^2 \rangle}{\langle N \rangle^2}
$$
 = normalized jet pedestal \approx 2

- Leading particle > 5 GeV/c restricts impact parameter variation to small values
	- => reduced multiplicity fluctuation in transverse region wrt MinBias
	- from Pythia 8: $C_2^{pedestal} \approx C_3^{MPI} / (C_2^{MPI})^2 \approx 1.4 < C_2^{MB}$

Fluctuations within the transverse region

2

- Expect larger sensitivity to hard contribution (ISR/FRS) in the MAX region
- KNO scaling holds for both up to $N/(N) \approx 4$

Thesis Feng Fan using KNO scaling variablesTrans-max region $\langle N^{t\text{-}max}_{\text{ch}} \rangle P(N^{t\text{-}max}_{\text{ch}})$ $5 \le p_{\tau}^{\text{trig}} \le 40 \text{ GeV}/c$ 10 $p_r \ge 0.5$ GeV/c, $|\eta|$ <0.8 $\overline{\overline{3}}$ 10^{-2} 10^{-3} **ALICE Preliminary** "TransMAX" \rightarrow pp \sqrt{s} = 2.76 TeV \rightarrow pp \sqrt{s} = 5.02 TeV 10^{-4} \nightharpoonup pp \sqrt{s} = 7 TeV \nightharpoonup pp \sqrt{s} = 13 TeV riikaan kanadanaa kanadanaa kanad Ratio to 7 TeV 3 5 6 $N_{\rm ch}^{t\text{-}max}/\langle N_{\rm ch}^{t\text{-}max}\rangle$ ALI-PREL-565075

EbyE Separation into TransMIN / TransMAX Region

Origin of very high multiplicity events

PYTHIA8.230, pp \sqrt{s} = 13 TeV, nondiffractive events

- Very high multiplicity events are not anymore explained by centrality
- Mainly statistical fluctuations.

11

- Hard probe itself contributes always to some extent to the measured event multiplicity
- Strong deviation from linearity due to autocorrelation effects?
	- plus additional more interesting density effects?
- Clear dependence on hardness and no dependence on particle species at high p_T

12

How to meet the challenge **Deny Accept**

Event Classification Rapidity gap, Transverse Region

Embrace

Talk by Antonio Ortiz Velasquez, Wed 23/10

Measure multiplicity dependence and correlations for the same observable

Should be focus for Run 3, if we want to continue with Yield vs Multiplicity measurements

Phys.Rev.D 107 (2023) 7

Avoid bias by using transverse region as event activity estimator

- In MC: R_T estimator removes bias for all p_T bins
- 0-bin (signal free bin) is important for the correct normalisation
	- use random azimuth direction for this bin ("random cones")
- Has not been exploited so far

14

S. Weber et al., EPJC, 79 (2019)

• Constrained by normalisation to events with trigger particle. • Trigger particle as function of R_T has not been studied.

Production of π **, K, p as a function of** p_{T} **and** R_{T}

Particle production inside / outside jet

- UE \approx MB for effects vs p_T seen in many measurements
- Expected if MPIs approximately factorise (i.e. probability of an interaction does not depend on the others)
- However, it is not necessarily the case that if an effect is not present in a jet or (towards region) that it is not related to parton fragmentation
- Reason: jet-tag introduces an additional scale not present in the inclusive measurements.
- Need refined definition of "out-of-jet production"

Particle production from fragmentation

- Fragmentation yield depends mainly on momentum fraction $\langle z \rangle = p_T/E_{jet}$
- For Λ inside jets (previous slide), $\langle z \rangle$ is small and increase with p_T
- It is expected to be high $(\langle z \rangle = 0.7$ -0.8) and approximately constant for the inclusive selection = fragmentation bias related to steepness of p_T spectrum

⟨*z*⟩ **from** *p***^T weighted Di-hadron correlation**

- $\langle z \rangle_{DHC}$ can be only be a proxy for the real $\langle z \rangle$
- However, expected difference between inclusive and jet measurements are large
- Does also work for multiplicity dependent measurements
- Expect additional constraints on models.

Analysis Lang Xu

Strangeness enhancement using angular correlations

• Might also help to understand appearance of strangeness enhancement effects in the towards region when lowering the trigger cut

Summary

- Measurements of multiplicity distribution in the underlying event of hard processes help to better understand the production mechanisms of high multiplicity events in pp collisions.
	- Important contributions from CCNU members (R_T distributions)
- Prospects for improving measurements of particle yields vs multiplicity
	- Reduce auto-correlation bias
		- by combination with angular correlation measurements
		- \bullet use R_T as classifier for the trigger yield
		- … or event classification (see talk Antonio Ortiz)
	- Aim for improved sensitivity to particle production mechanisms ("bulk" vs jet)
		- complementing present "out-of-jet" definition with mean momentum fraction measurements

