Shanshan Cao *Shandong University*

Light and heavy flavor jet quenching in relativistic heavy-ion collisions

Jet quenching in high-energy nuclear collisions

Nuclear modification factor

 $R_{AA} \equiv \frac{d^2N^{AA}/dydp_{\perp}}{d^2N^{pp}/dydp_{\perp} \times \langle N_{coll}^{AA} \rangle}$

[Mueller *et al.*, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)]

Jets tagged with heavy quarks

- Produced from initial hard scatterings
- Serve as an ideal probe of the QGP properties
- Provide a unique opportunity for studying the flavor dependence of parton splitting (dead cone effect)

Searches for the flavor dependence of parton splitting

No clear separation between charged hadrons, *D*, and *B*, except at very low p_T

Goals:

-
- Understand flavor hierarchies embedded in both hadrons and jets • Use hadron and jet observables to probe the QGP properties

Hadron R_{AA} (parton energy loss) Distribution of splitting angles in pp

Clear suppression of splitting at small *θ* in *D*-jets *vs*. inclusive jets

Theoretical framework of jet quenching

$$
d\sigma_h = \sum_{abjd} f_{alp} \otimes f_{blp} \otimes d\sigma_{ab \to jd} \otimes D_{hlj} \qquad d\tilde{\sigma}
$$

- $f_{a/p}, f_{b/p} \rightarrow f_{a/A}, f_{b/B}$: cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, ..., measured in *pA* collisions
- *h*/*j*
- $h_{ij} = \sum_{j'} P_{j \to j'} \otimes D_{hij'}$

$$
d\tilde{\sigma}_h = \sum_{abid} f_{a/A} \otimes f_{b/B} \otimes d\sigma_{ab \to jd} \otimes \tilde{D}_{h/j}
$$

• $D_{h/j} \rightarrow \tilde{D}_{h/j}$: medium modified fragmentation function, hot nuclear matter (final state) effect . Factorization assumption: $\tilde{D}_{h/j} = \sum_{i'} P_{j\rightarrow j'} \otimes D_{h/j'}$, nuclear modification of parton *j*

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathcal{C}_a^{\text{el}} + \mathcal{C}_a^{\text{inel}})$

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$)

 $\int_{a}^{c} P_{b} f_{a} f_{b} \cdot (2\pi)^{4} \delta^{4} (p_{a} + p_{b} - p_{c} - p_{d}) \, d\theta_{ab} \rightarrow c d$ 2

 $2 \rightarrow 2$ scattering matrices

$$
\mathscr{C}_a^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)
$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathcal{C}_a^{\text{el}} + \mathcal{C}_a^{\text{inel}})$

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$)

loss term: **scattering rate** (for Monte-Carlo simulation)

$$
\Gamma_a^{\text{el}}(\mathbf{p}_a, T) = \sum_{b,c,d} \frac{\gamma_b}{2E_a} \int \prod_{i=b,c,d} d[p_i] f_i
$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathcal{C}_a^{\text{el}} + \mathcal{C}_a^{\text{inel}})$

 $\int_{a}^{c} P_{b} f_{a} f_{b} \cdot (2\pi)^{4} \delta^{4} (p_{a} + p_{b} - p_{c} - p_{d}) \, d\theta_{ab} \rightarrow c d$ 2

 $2 \rightarrow 2$ scattering matrices

 $\int_{b}^{c} \cdot (2\pi)^{4} \delta^{(4)}(p_{a} + p_{b} - p_{c} - p_{d}) |\mathcal{M}_{ab \to cd}|^{2}$

$$
\mathscr{C}_a^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)
$$

Inelastic scattering

• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

$$
-\sin^2\left(\frac{t-t_i}{2\tau_f}\right)
$$

[Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)]

• Higher-twist formalism: collinear expansion ($\langle k_{\perp}^2 \rangle \ll l_{\perp}^2 \ll Q^2$)

Flavor hierarchy in hadron suppression

• Hadron production in *pp* collisions: NLO production + fragmentation

-
-

Flavor hierarchy in hadron suppression

NLO initial production and fragmentation + Boltzmann transport + hydrodynamic medium for QGP

100 p_T (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 RAA CMS 0-10% ALICE 0-5% $q \rightarrow h^{\pm}$ $g \rightarrow h^{\pm}$ $+ g \rightarrow h$

charged hadron *D* meson

- *g*-initiated *h* & *D* R_{AA} < *g*-initiated *h* & *D* R_{AA} $[\Delta E_q$ > $\Delta E_{q/c}]$
-
-

• R_{AA} (c->D) > R_{AA} (q->h) $[\Delta E_q > \Delta E_c]$, R_{AA} (g->D) < R_{AA} (g->h) [different FFs] => R_{AA} (h) $\approx R_{AA}$ (D) • Signature of flavor hierarchy of parton Δ*E* offset by NLO production/fragmentation in hadron R_{AA}

Flavor hierarchy in hadron suppression

- starting from $p_T \sim 8$ GeV
- **confirmation from future precision measurement**

•

• A simultaneous description of charged hadron, *D* meson, *B* meson, *B*-decay *D* meson R_{AA} 's

• Predict *R*_{AA} separation between *B* and *h* / *D* below 40 GeV, but similar values above – wait for

Extraction of parton energy loss from hadron R_{AA}

- Mean p_T loss: $\langle \Delta p_T^j \rangle = C_j \beta_g p_T^{\gamma} \log(p_T)$
	- β_g overall magnitude for *g*
	- : flavor dependence *Cj*
	- *γ* p_T dependence
- *p*T loss distribution:

NLO initial production and fragmentation + **Parametrized** parton energy loss inside the QGP

$$
W_{AA}(x) = \frac{\alpha^{\alpha} x^{\alpha-1} e^{-\alpha x}}{\Gamma(\alpha)}
$$

$$
x \equiv \Delta p_{\rm T} / \langle \Delta p_{\rm T} \rangle
$$

Bayesian calibration to data Constraints on parameters

[Xing, SC, Qin, Phys. Lett. B 850 (2024) 138523]

 c_b

 α

 C_C

 c_q

Extraction of parton energy loss from hadron R_{AA}

• $\Delta E_g > \Delta E_g \sim \Delta E_c > \Delta E_b$

- Flavor hierarchy of parton energy loss is encoded in the hadron R_{AA} data
- between parton energy loss and NLO production and fragmentation

Average energy loss **Energy loss distribution**

∼ Δ*Ec* > Δ*Eb* • More stringent test on QCD calculation

• No obvious hierarchy for the hadron R_{AA} data themselves, due to the interplay

From hadrons to full jets

- Jet partons and medium background cannot be cleanly separated in reality
-
- Jet-medium interactions: medium modification of jets + medium response

• Medium response (energy deposition + depletion) is naturally included in all jet observables

Jet *R***AA and** *v***²**

- Including medium response reduces jet energy loss and thus increases the jet R_{AA}
-

• With R_{AA} fixed, including medium response (coupled to medium flow) increases the jet v_2

Jet substructure

[Tachibana, Chang, Qin, Phys. Rev. C 95 (2017) 044909]

Transverse (*r*) distribution: jet shape

Longitudinal (*z*) distribution: jet fragmentation function

[Chen, SC, Luo, Pang, Wang, Phys. Lett. B 777 (2018) 86-90]

Search for unique signatures of medium response

Energy suppression in diffusion wake

- SC, Luo, Pang, Wang, PLB 777 (2018) 86, Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301]
- Confirmed by recent CMS data [CMS-PAS-HIN-23-006]

• Energy suppression predicted in the backward direction of jets at $1 < p_T^h < 2$ GeV [Chen, $\frac{h}{T}$ < 2 GeV

Search for unique signatures of medium response

- Larger quark density and strangeness density in QGP than in vacuum jets
-
- Stronger enhancement at larger distance from the jet axis

Baryon enhancement Strangeness enhancement

• Enhanced baryon-to-meson ratio and strangeness around jets in AA *vs*. *pp* collisions

[Luo, Mao, Qin, Wang, Zhang, PLB 837 (2023) 137638; Chen, SC, Luo, Pang, Wang, NPA 1005 (2021) 121934]

Hadron chemistry around quenched jets

A novel observable: energy-energy correlator (EEC)

• EEC can also reveal the flavor dependence of splitting angles of partons in *pp* collisions • Implement a first realistic calculation on light and heavy flavor jet EEC in AA collisions

- EEC: *d*Σ *dRL* $=$ $\int d\vec{n}_1 d\vec{n}_2$ ⃗ $\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \rangle$ ⃗ \mathcal{Q}^2 $\delta(\Delta R_{12} - R_L)$
- EEC of jets presents a clear angular scale separation between perturbative and nonperturbative (e.g. hadronization) regions
-
-

: energy flow in a given direction, ℰ $\Delta R_{12} = \sqrt{\Delta \phi_{12}^2 + \Delta \eta_{12}^2}$: relative angle, Q: hard scale

[Komiske et. al., PRL 130 (2023) 051901] [Craft et. al., arXiv:2210.09311]

• Jet in *pp*: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

Light *vs.* **heavy flavor jet EEC in** *pp* **collisions**

• Flavor (mass) dependence:

- Overall magnitude: charged jet > *D*-jet > *B*-jet
- Typical (peak) angle: charged jet < *D*-jet < *B*-jet

Suppression of splitting within $\theta_0 \sim m_O/E_O$ in vacuum

$$
\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{|\theta_{ij} - \theta| < \Delta\theta/2} \frac{p_{\text{T},i}(\vec{n}_i) p_{\text{T},j}(\vec{n}_j)}{p_{\text{T},jet}^2}
$$

• Jet in *pp*: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

Light *vs.* **heavy flavor jet EEC in** *pp* **collisions**

• Flavor (mass) dependence:

- Overall magnitude: charged jet > *D*-jet > *B*-jet
- Typical (peak) angle: charged jet < *D*-jet < *B*-jet

Suppression of splitting within $\theta_0 \sim m_Q/E_Q$ in vacuum

• Jet energy dependence

• Higher $p_T \to \Sigma$ peaks at smaller θ

 $p_{\text{T}}\theta_{\text{peak}}$ ~ transition scale between pert. and non-pert.

$$
\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{|\theta_{ij} - \theta| < \Delta\theta/2} \frac{p_{\text{T},i}(\vec{n}_i) p_{\text{T},j}(\vec{n}_j)}{p_{\text{T},jet}^2}
$$

EEC of partons developed from a single quark

20

- Single quark \rightarrow LBT + static medium \rightarrow EEC of daughter partons
- Flavor (mass) hierarchy of EEC:
	-
	- Clear strong suppression of Σ below $\theta_0 \sim m_Q/E_{\rm initial}$
- Contributions form medium response and gluon emission show similar hierarchies

• Magnitude: charged > *D* > *B*-jet; peak position: charged < *D* < *B*-jet (similar to vacuum jets)

Xing, SC, Qin, Wang, arXiv:2409.12843

Light *vs.* **heavy flavor jet EEC in central PbPb collisions**

• General features: suppression at intermediate θ , enhancement at small θ (except for *B*-jet)

Nuclear modification (AA - *pp*) — Pythia + LBT in hydro

• Flavor hierarchy: weaker nuclear modification (both suppression and enhancement) for jets

- and large *θ*
- tagged with heavier mesons

Different contributions to medium modification on EEC

S: shower partons inherited from Pythia S+R: add medium-induced gluons S+R+M: further add medium response

• Jet energy loss causes suppression over the entire θ region • Medium-induced gluon emission enhances EEC at small *θ*

-
-
- Medium response enhances EEC at large *θ*

Effects of trigger bias on the jet EEC

 \rightarrow Enhances EEC at small θ , reduces the suppression/enhancement at intermediate/large θ

- AA jets with trigger bias originate from pp jets with higher p_T and initial virtuality scale → Stronger but narrower vacuum splittings -0.3
- Can be tested using y-jets

*p*T trigger in both *pp* and AA *p*T trigger only in *pp* (no trigger bias in AA)

Constraints on jet transport coefficient inside the QGP

[JET, Phys. Rev.C 90 (2014) 1, 014909]

 $\hat{q} \equiv d\langle k_{\perp}^2 \rangle/dt \sim \langle F^{ai+}(0)F_i^{a+}(y^-) \rangle$

- QGP is much more opaque than cold nuclear matter to jet propagation
- Recent developments on \hat{q} extraction: Multistage jet evolution model with Bayesian analysis [JETSCAPE, Phys. Rev. C 104 (2021) 1, 024905] Information field based global interference [Xie et al., Phys. Rev. C 108 (2023) 1, L011901]

Transport

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathcal{C}_a^{\text{el}} + \mathcal{C}_a^{\text{inel}})$

Probing the equation of state of the QGP

Strong coupling strength $g(E, T)$

Equation of state

 $P_{qp}(m_u, m_d, ..., T) = \Sigma_{i=u,d,s,g} d_i \int \frac{d^3p}{(2\pi)^3} \frac{|\vec{p}^2|}{3E_i(p)} f_i(p) - B(T)$ $=\Sigma_i P^i_{kin}(m_i,T)-B(T)$ $\epsilon = TdP(T)/dT - P(T),$ $s = (\epsilon + P)/T$

Thermal mass of partons

$$
m_g^2 = \frac{1}{6}g^2 \left[(N_c + \frac{1}{2}n_f)T^2 + \frac{N_c}{2\pi^2} \Sigma_q \mu_q^2 \right]
$$

$$
m_{u,d}^2 = \frac{N_c^2 - 1}{8N_c}g^2 \left[T^2 + \frac{\mu_{u,d}^2}{\pi^2} \right]
$$

$$
m_s^2 - m_{0s}^2 = \frac{N_c^2 - 1}{8N_c}g^2 \left[T^2 + \frac{\mu_s^2}{\pi^2} \right]
$$

Strategy: Fit *g* from comparing transport model to data Calculate EoS from *g*

[F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355]

EoS of QGP and diffusion coefficient of heavy quarks

- Agreement with the lattice data
-

Equation of state Diffusion coefficient

• Simultaneous constraint on QGP properties and transport properties of hard probes

Constraints on the E&M field with the *D* **meson** *v***¹**

Constraints on the E&M field with the *D* **meson** *v***¹**

• Tilted geometry w.r.t. the beam direction dominates at the RHIC energy • Sensitivity of the *D* meson *v*1 to different E&M evolution profiles at the LHC

-
- Strong E&M field dominates at the LHC energy
- [Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

Summary

Probing strongly interacting matter using energetic hadrons and jets

- Flavor hierarchy of parton energy loss is encoded in the hadron R_{AA} , though not explicit due to the interplay between energy loss and NLO contributions
- The jet EEC is an excellent observable to study the dead cone effect on parton splitting (magnitude and peak position of EEC) in both *pp* and AA collisions
- Jet and heavy flavor observables can constrain various QGP properties

Thank. you!