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Jet quenching in high-energy nuclear collisions
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[ by M. Rybar / ATLAS ]
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Jets tagged with heavy quarks
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• Produced from initial hard scatterings  

• Serve as an ideal probe of the QGP properties 

• Provide a unique opportunity for studying the flavor 
dependence of parton splitting (dead cone effect)
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Searches for the flavor dependence of parton splitting
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No clear separation between charged 
hadrons, D, and B, except at very low pT 
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Goals: 
• Understand flavor hierarchies embedded in both hadrons and jets 
• Use hadron and jet observables to probe the QGP properties

 Hadron RAA (parton energy loss) Distribution of splitting angles in pp

Clear suppression of splitting at small  
in D-jets vs. inclusive jets
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Theoretical framework of jet quenching
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dσh = ∑
abjd

fa/p ⊗ fb/p ⊗ dσab→jd ⊗ Dh/j dσ̃h = ∑
abjd

fa/A ⊗ fb/B ⊗ dσab→jd ⊗ D̃h/j

• : cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, … , 
measured in pA collisions

• : medium modified fragmentation function, hot nuclear matter (final state) effect

• Factorization assumption:  , nuclear modification of parton j

fa/p, fb/p → fa/A, fb/B

Dh/j → D̃h/j

D̃h/j = ∑j′ 

Pj→j′ 
⊗ Dh/j′ 



Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )
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Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )
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Elastic scattering (  )ab → cd

𝒞el
a = ∑

b,c,d
∫ ∏

i=b,c,d

d[pi]
2Ea

(γd fc fd − γb fa fb) ⋅ (2π)4δ4(pa + pb − pc − pd) ℳab→cd
2

 scattering matrices2 → 2



Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )

loss term: scattering rate  
(for Monte-Carlo simulation)

Γel
a (pa, T) = ∑

b,c,d

γb

2Ea ∫ ∏
i=b,c,d

d[pi]fb ⋅ (2π)4δ(4)(pa + pb − pc − pd) |ℳab→cd |2
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Elastic scattering (  )ab → cd
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Inelastic scattering
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HQ (p)
g (l) 
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• Higher-twist formalism: collinear expansion (  ) 

    

• Medium information absorbed in 

⟨k2
⊥⟩ ≪ l2

⊥ ≪ Q2

dΓinel
a

dzdl2⊥
=

dNg

dzdl2⊥dt
= 6αsP(z)l4

⊥ ̂q
π(l2⊥ + z2M2)4 sin2 ( t − ti

2τf )
̂q ≡ d⟨p2

⊥⟩/dt

[ Majumder PRD 85 (2012); 
Zhang, Wang and Wang, PRL 
93 (2004) ]



Flavor hierarchy in hadron suppression
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• Hadron production in pp collisions: NLO production + fragmentation 

NLO contribution to HQ production in Pythia 
simulation (gluon splitting)

[ Norrbin and Sjostrand, EPJC 17 (2000) ] [ ATLAS, EPJC 73 (2013) ]

• NLO contribution increases with  
• NLO contribution increases with b-jet pT

s

Different NLO contributions to light and heavy 
flavor hadrons

• dominates  production up to 50 GeV 
• contributes to over 40% D up to 100 GeV
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Flavor hierarchy in hadron suppression
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NLO initial production and fragmentation + Boltzmann transport + hydrodynamic medium for QGP
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• g-initiated h & D RAA < q-initiated h & D RAA [ΔEg > ΔEq/c] 

• RAA (c->D) > RAA (q->h) [ΔEq > ΔEc], RAA (g->D) < RAA (g->h) [different FFs] => RAA (h) ≈ RAA (D) 

• Signature of flavor hierarchy of parton ΔE offset by NLO production/fragmentation in hadron RAA



Flavor hierarchy in hadron suppression
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• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson RAA’s 
starting from pT ~ 8 GeV

• Predict RAA separation between B and h / D below 40 GeV, but similar values above – wait for 
confirmation from future precision measurement

•

Xing, SC, Qin and Xing, Phys. Lett. B 
805 (2020) 135424
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Extraction of parton energy loss from hadron RAA
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NLO initial production and fragmentation + Parametrized parton energy loss inside the QGP

WAA(x) = ααxα−1e−αx

Γ(α)

⟨Δpj
T⟩ = Cjβgpγ

T log(pT)• Mean pT loss:

• pT loss distribution: 

x ≡ ΔpT/⟨ΔpT⟩

• : overall magnitude for g 

• : flavor dependence 
• : pT dependence

βg
Cj
γ

Bayesian calibration to data Constraints on parameters

[ Xing, SC, Qin, Phys. Lett. B 850 (2024) 138523 ]



Extraction of parton energy loss from hadron RAA
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• Flavor hierarchy of parton energy loss is encoded in the hadron RAA data 

• No obvious hierarchy for the hadron RAA data themselves, due to the interplay 
between parton energy loss and NLO production and fragmentation

Average energy loss Energy loss distribution

x ≡ ΔpT/⟨ΔpT⟩g, q, c, b

• More stringent test on QCD calculation• ΔEg > ΔEq ∼ ΔEc > ΔEb



From hadrons to full jets
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jet

energy 
holes recoil

gluon bremsstrahlung

energy 
deposition

• Jet partons and medium background cannot be cleanly separated in reality 
• Medium response (energy deposition + depletion) is naturally included in all jet observables 
• Jet-medium interactions: medium modification of jets + medium response



Jet RAA and v2
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[ He, Chen, Luo, SC, 
Pang, Wang, Phys. Rev. 
C 106 (2022) 044904 ]

RAA v2

• Including medium response reduces jet energy loss and thus increases the jet RAA 

• With RAA fixed, including medium response (coupled to medium flow) increases the jet v2 



Jet substructure
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[ Tachibana, Chang, Qin, Phys. Rev. C 95 
(2017) 044909 ]

Transverse (r) distribution: jet shape

Longitudinal (z) distribution: 
jet fragmentation function

[ Chen, SC, Luo, Pang, Wang, Phys. Lett. B 
777 (2018) 86-90 ]

r
δr

z

medium 
response

medium 
response

jet 
quenching



Search for unique signatures of medium response
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Energy suppression in diffusion wake

γ/Z

jet

θ

wake

• Energy suppression predicted in the backward direction of jets at  [ Chen, 
SC, Luo, Pang, Wang, PLB 777 (2018) 86, Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301 ] 

• Confirmed by recent CMS data [ CMS-PAS-HIN-23-006 ]

1 < ph
T < 2 GeV



Search for unique signatures of medium response
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• Larger quark density and strangeness density in QGP than in vacuum jets 
• Enhanced baryon-to-meson ratio and strangeness around jets in AA vs. pp collisions 
• Stronger enhancement at larger distance from the jet axis

[ Luo, Mao, Qin, Wang, Zhang, PLB 837 (2023) 137638; Chen, SC, Luo, Pang, Wang, NPA 1005 (2021) 121934 ] 

Hadron chemistry around quenched jets

Baryon enhancement Strangeness enhancement
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A novel observable: energy-energy correlator (EEC)
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• EEC: 

• EEC of jets presents a clear angular scale separation between perturbative and non-
perturbative (e.g. hadronization) regions 

• EEC can also reveal the flavor dependence of splitting angles of partons in pp collisions 
• Implement a first realistic calculation on light and heavy flavor jet EEC in AA collisions

[ Craft et. al., arXiv:2210.09311][ Komiske et. al., PRL 130 (2023) 051901 ]

dΣ
dRL

= ∫ d ⃗n1d ⃗n2
⟨ℰ( ⃗n1)ℰ( ⃗n2)⟩

Q2 δ(ΔR12 − RL)
: energy flow in a given direction, 


 : relative angle, Q: hard scale

ℰ
ΔR12 = Δϕ2

12 + Δη2
12



• Jet in pp: Pythia 8 simulation 

• EEC analysis (i, j denote jet constituents)

Light vs. heavy flavor jet EEC in pp collisions
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• Flavor (mass) dependence: 
• Overall magnitude: charged jet > D-jet > B-jet 
• Typical (peak) angle: charged jet < D-jet < B-jet 

Suppression of splitting within  in vacuumθ0 ∼ mQ/EQ
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• Jet in pp: Pythia 8 simulation 

• EEC analysis (i, j denote jet constituents)

Light vs. heavy flavor jet EEC in pp collisions
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EEC of partons developed from a single quark
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• Single quark  LBT + static medium  EEC of daughter partons 

• Flavor (mass) hierarchy of EEC: 
• Magnitude: charged > D > B-jet; peak position: charged < D < B-jet (similar to vacuum jets) 

• Clear strong suppression of  below  

• Contributions form medium response and gluon emission show similar hierarchies

→ →

Σ θ0 ∼ mQ/Einitial
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Light vs. heavy flavor jet EEC in central PbPb collisions
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• General features: suppression at intermediate , enhancement at small  (except for B-jet) 
and large  

• Flavor hierarchy: weaker nuclear modification (both suppression and enhancement) for jets 
tagged with heavier mesons 
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Different contributions to medium modification on EEC

22

S: shower partons inherited from Pythia 
S+R: add medium-induced gluons 
S+R+M: further add medium response

• Jet energy loss causes suppression over the entire  region 

• Medium-induced gluon emission enhances EEC at small  

• Medium response enhances EEC at large 
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Effects of trigger bias on the jet EEC
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• AA jets with trigger bias originate from pp jets with higher pT and initial virtuality scale 
 Stronger but narrower vacuum splittings 
 Enhances EEC at small , reduces the suppression/enhancement at intermediate/large  

• Can be tested using -jets
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Constraints on jet transport coefficient inside the QGP
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̂q ≡ d⟨k2
⊥⟩/dt ∼ ⟨Fai+(0)Fa+

i (y−)⟩

nucleus        QGP≪
[ JET, Phys. Rev.C 90 (2014) 1, 014909 ]

• QGP is much more opaque than cold nuclear 
matter to jet propagation

• Recent developments on  extraction:

Multistage jet evolution model with Bayesian 
analysis
[ JETSCAPE, Phys. Rev. C 104 (2021) 1, 024905 ]

Information field based global interference
[ Xie et al., Phys. Rev. C 108 (2023) 1, L011901 ]

̂q
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Transport 

      ϵ = TdP(T)/dT − P(T), s = (ϵ + P)/T

Probing the equation of state of the QGP

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a ) Thermal mass of partons

Strong coupling strength

g(E, T)

Equation of state
Strategy:  
Fit g from comparing 

transport model to data 

Calculate EoS from g

[ F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355 ]
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EoS of QGP and diffusion coefficient of heavy quarks

Equation of state Diffusion coefficient

• Agreement with the lattice data 
• Simultaneous constraint on QGP properties and transport properties of hard probes



Constraints on the E&M field with the D meson v1
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RHIC LHC



Constraints on the E&M field with the D meson v1
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RHIC LHC

• Tilted geometry w.r.t. the beam direction dominates at the RHIC energy 
• Strong E&M field dominates at the LHC energy 
• Sensitivity of the D meson v1 to different E&M evolution profiles at the LHC 

[ Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

[ by X.-G. Huang ]



Summary
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Probing strongly interacting matter using energetic hadrons and jets 

• Flavor hierarchy of parton energy loss is encoded in the hadron RAA, though not 
explicit due to the interplay between energy loss and NLO contributions  

• The jet EEC is an excellent observable to study the dead cone effect on parton 
splitting (magnitude and peak position of EEC) in both pp and AA collisions 

• Jet and heavy flavor observables can constrain various QGP properties

Thank. you!


