Light and heavy flavor jet quenching in relativistic heavy-ion collisions

Shanshan Cao Shandong University

Jet quenching in high-energy nuclear collisions

Nuclear modification factor

 $R_{AA} \equiv rac{d^2 N^{AA}/dy dp_{\perp}}{d^2 N^{pp}/dy dp_{\perp} imes \langle N^{AA}_{coll}
angle}$

[Mueller et al., Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)]

Jets tagged with heavy quarks

- Produced from initial hard scatterings
- Serve as an ideal probe of the QGP properties
- Provide a unique opportunity for studying the flavor dependence of parton splitting (dead cone effect)

Searches for the flavor dependence of parton splitting

Hadron *R*_{AA} (parton energy loss)

No clear separation between charged hadrons, D, and B, except at very low p_{T}

Goals:

- Understand flavor hierarchies embedded in both hadrons and jets Use hadron and jet observables to probe the QGP properties

Distribution of splitting angles in pp

Clear suppression of splitting at small θ in *D*-jets *vs*. inclusive jets

Theoretical framework of jet quenching

$$d\sigma_{h} = \sum_{abjd} f_{alp} \otimes f_{blp} \otimes d\sigma_{ab \to jd} \otimes D_{hlj}$$

- $f_{a/p}, f_{b/p} \rightarrow f_{a/A}, f_{b/B}$: cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, ..., measured in pA collisions

$$d\tilde{\sigma}_{h} = \sum_{abjd} f_{a/A} \otimes f_{b/B} \otimes d\sigma_{ab \rightarrow jd} \otimes \tilde{D}_{h/j}$$

• $D_{h/i} \rightarrow D_{h/i}$: medium modified fragmentation function, hot nuclear matter (final state) effect • Factorization assumption: $\tilde{D}_{h/j} = \sum_{i'} P_{j \to j'} \otimes D_{h/j'}$, nuclear modification of parton j

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$ **)**

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b f_a f_b) \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathscr{M}_{ab \to cd} \right|^2$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $2 \rightarrow 2$ scattering matrices

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$ **)**

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b f_a f_b) \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathscr{M}_{ab \to cd} \right|^2$$

loss term: scattering rate (for Monte-Carlo simulation)

$$\Gamma_a^{\text{el}}(\mathbf{p}_a, T) = \sum_{b,c,d} \frac{\gamma_b}{2E_a} \int \prod_{i=b,c,d} d[p_i] f_d$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $2 \rightarrow 2$ scattering matrices

 $f_b \cdot (2\pi)^4 \delta^{(4)}(p_a + p_b - p_c - p_d) |\mathcal{M}_{ab \to cd}|^2$

Inelastic scattering

• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

[Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)]

• Higher-twist formalism: collinear expansion ($\langle k_{\perp}^2 \rangle \ll l_{\perp}^2 \ll Q^2$)

$$\frac{1}{4}\sin^2\left(\frac{t-t_i}{2\tau_f}\right)$$

Flavor hierarchy in hadron suppression

Flavor hierarchy in hadron suppression

NLO initial production and fragmentation + Boltzmann transport + hydrodynamic medium for QGP

1.2 CMS 0-10% ALICE 0-5% 0.8 R 44 0.6 0.4 100 10 p_T (GeV)

charged hadron

- g-initiated h & D $R_{AA} < q$ -initiated h & D $R_{AA} \left[\Delta E_q > \Delta E_{q/c} \right]$

• $R_{AA}(c > D) > R_{AA}(q > h) [\Delta E_q > \Delta E_c], R_{AA}(q > D) < R_{AA}(q > h) [different FFs] => R_{AA}(h) \approx R_{AA}(D)$ Signature of flavor hierarchy of parton ΔE offset by NLO production/fragmentation in hadron R_{AA}

Flavor hierarchy in hadron suppression

- starting from $p_T \sim 8 \text{ GeV}$
- confirmation from future precision measurement

• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson R_{AA}'s

• Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above – wait for

Extraction of parton energy loss from hadron RAA

- Mean p_T loss: $\langle \Delta p_T^J \rangle = C_i \beta_g p_T^\gamma \log(p_T)$
 - β_g : overall magnitude for g
 - C_i : flavor dependence
 - γ : p_T dependence
- p_{T} loss distribution:

$$W_{AA}(x) = \frac{\alpha^{\alpha} x^{\alpha - 1} e^{-\alpha x}}{\Gamma(\alpha)}$$

$$x \equiv \Delta p_{\rm T} / \langle \Delta p_{\rm T} \rangle$$

Bayesian calibration to data

NLO initial production and fragmentation + Parametrized parton energy loss inside the QGP

[Xing, SC, Qin, Phys. Lett. B 850 (2024) 138523]

Constraints on parameters

Extraction of parton energy loss from hadron RAA

Average energy loss

• $\Delta E_g > \Delta E_q \sim \Delta E_c > \Delta E_b$

- Flavor hierarchy of parton energy loss is encoded in the hadron R_{AA} data
- between parton energy loss and NLO production and fragmentation

Energy loss distribution

More stringent test on QCD calculation

• No obvious hierarchy for the hadron R_{AA} data themselves, due to the interplay

From hadrons to full jets

- Jet partons and medium background cannot be cleanly separated in reality •
- Jet-medium interactions: medium modification of jets + medium response

Medium response (energy deposition + depletion) is naturally included in all jet observables

Jet R_{AA} and v₂

RAA

- Including medium response reduces jet energy loss and thus increases the jet RAA

• With R_{AA} fixed, including medium response (coupled to medium flow) increases the jet v_2

Jet substructure

Transverse (*r*) distribution: jet shape

[Tachibana, Chang, Qin, Phys. Rev. C 95] (2017) 044909]

Longitudinal (z) distribution: jet fragmentation function

[Chen, SC, Luo, Pang, Wang, Phys. Lett. B 777 (2018) 86-90]

Search for unique signatures of medium response

Energy suppression in diffusion wake

- SC, Luo, Pang, Wang, PLB 777 (2018) 86, Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301]
- Confirmed by recent CMS data [CMS-PAS-HIN-23-006]

Energy suppression predicted in the backward direction of jets at $1 < p_T^h < 2$ GeV [Chen,

Search for unique signatures of medium response

Hadron chemistry around quenched jets

Baryon enhancement

- Larger quark density and strangeness density in QGP than in vacuum jets
- Stronger enhancement at larger distance from the jet axis

Strangeness enhancement

Enhanced baryon-to-meson ratio and strangeness around jets in AA vs. pp collisions

[Luo, Mao, Qin, Wang, Zhang, PLB 837 (2023) 137638; Chen, SC, Luo, Pang, Wang, NPA 1005 (2021) 121934]

A novel observable: energy-energy correlator (EEC)

[Komiske et. al., PRL 130 (2023) 051901]

- EEC: $\frac{d\Sigma}{dR_L} = \int d\vec{n}_1 d\vec{n}_2 \frac{\langle \mathscr{E}(\vec{n}_1)\mathscr{E}(\vec{n}_2) \rangle}{Q^2} \delta(\Delta R_{12} - R_L)$
- EEC of jets presents a clear angular scale separation between perturbative and nonperturbative (e.g. hadronization) regions

[Craft et. al., arXiv:2210.09311]

 \mathscr{E} : energy flow in a given direction, $\Delta R_{12} = \sqrt{\Delta \phi_{12}^2 + \Delta \eta_{12}^2}$: relative angle, Q: hard scale

• EEC can also reveal the flavor dependence of splitting angles of partons in pp collisions Implement a first realistic calculation on light and heavy flavor jet EEC in AA collisions

Light vs. heavy flavor jet EEC in pp collisions

• Jet in pp: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

$$\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{\substack{|\theta_{ij} - \theta| < \Delta\theta/2}} \frac{p_{\mathrm{T},i}(\vec{n}_i) p_{\mathrm{T},j}(\vec{n}_j)}{p_{\mathrm{T},j\text{et}}^2}$$

• Flavor (mass) dependence:

- Overall magnitude: charged jet > D-jet > B-jet
- Typical (peak) angle: charged jet < D-jet < B-jet

Suppression of splitting within $\theta_0 \sim m_Q/E_Q$ in vacuum

Light vs. heavy flavor jet EEC in pp collisions

• Jet in pp: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

$$\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{\substack{|\theta_{ij} - \theta| < \Delta\theta/2}} \frac{p_{\mathrm{T},i}(\vec{n}_i) p_{\mathrm{T},j}(\vec{n}_j)}{p_{\mathrm{T},j\text{et}}^2}$$

• Flavor (mass) dependence:

- Overall magnitude: charged jet > D-jet > B-jet
- Typical (peak) angle: charged jet < D-jet < B-jet

Suppression of splitting within $\theta_0 \sim m_Q/E_Q$ in vacuum

• Jet energy dependence

• Higher $p_T \rightarrow \Sigma$ peaks at smaller θ

 $p_{\rm T}\theta_{\rm peak}$ ~ transition scale between pert. and non-pert.

EEC of partons developed from a single quark

- Single quark \rightarrow LBT + static medium \rightarrow EEC of daughter partons
- Flavor (mass) hierarchy of EEC:

 - Clear strong suppression of Σ below $\theta_0 \sim m_Q/E_{\rm initial}$
- Contributions form medium response and gluon emission show similar hierarchies

Xing, SC, Qin, Wang, arXiv:2409.12843

• Magnitude: charged > D > B-jet; peak position: charged < D < B-jet (similar to vacuum jets)

20

Light vs. heavy flavor jet EEC in central PbPb collisions

Nuclear modification (AA - pp) — Pythia + LBT in hydro

- and large θ
- tagged with heavier mesons

• General features: suppression at intermediate θ , enhancement at small θ (except for *B*-jet)

• Flavor hierarchy: weaker nuclear modification (both suppression and enhancement) for jets

Different contributions to medium modification on EEC

- Medium response enhances EEC at large θ

S: shower partons inherited from Pythia S+R: add medium-induced gluons S+R+M: further add medium response

• Jet energy loss causes suppression over the entire θ region - Medium-induced gluon emission enhances EEC at small θ

Effects of trigger bias on the jet EEC

p_{T} trigger in both pp and AA

- AA jets with trigger bias originate from pp jets with higher p_T and initial virtuality scale → Stronger but narrower vacuum splittings
- Can be tested using γ -jets

 p_{T} trigger only in pp (no trigger bias in AA)

 \rightarrow Enhances EEC at small θ , reduces the suppression/enhancement at intermediate/large θ

Constraints on jet transport coefficient inside the QGP

[JET, Phys. Rev.C 90 (2014) 1, 014909]

 $\hat{q} \equiv d\langle k_{\perp}^2 \rangle / dt \sim \langle F^{ai+}(0)F_i^{a+}(y^-) \rangle$

- QGP is much more opaque than cold nuclear matter to jet propagation
- Recent developments on \hat{q} extraction:

Multistage jet evolution model with Bayesian analysis

[JETSCAPE, Phys. Rev. C 104 (2021) 1, 024905]

Information field based global interference

[Xie et al., Phys. Rev. C 108 (2023) 1, L011901]

Probing the equation of state of the QGP

[F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355]

Transport

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{el} + \mathscr{C}_a^{inel})$

Strong coupling strength g(E,T)

Equation of state

 $P_{qp}(m_u, m_d, \dots, T) = \sum_{i=u,d,s,g} d_i \int \frac{d^3p}{(2\pi)^3} \frac{\left|\vec{p}\right|^2}{3E_i(p)} f_i(p) - B(T)$ $= \Sigma_i P_{kin}^i(m_i, T) - B(T)$ $\epsilon = TdP(T)/dT - P(T), \quad s = (\epsilon + P)/T$

Thermal mass of partons

$$\begin{split} m_g^2 &= \frac{1}{6} g^2 \left[(N_c + \frac{1}{2} n_f) T^2 + \frac{N_c}{2\pi^2} \Sigma_q \mu_q^2 \right] \\ m_{u,d}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_{u,d}^2}{\pi^2} \right] \\ m_s^2 - m_{0s}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_s^2}{\pi^2} \right] \end{split}$$

Strategy: Fit g from comparing transport model to data Calculate EoS from g

EoS of QGP and diffusion coefficient of heavy quarks

Equation of state

- Agreement with the lattice data

Diffusion coefficient

Simultaneous constraint on QGP properties and transport properties of hard probes

Constraints on the E&M field with the D meson v₁

Constraints on the E&M field with the D meson v₁

- Strong E&M field dominates at the LHC energy
- [Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

 Tilted geometry w.r.t. the beam direction dominates at the RHIC energy • Sensitivity of the D meson v₁ to different E&M evolution profiles at the LHC

Summary

Probing strongly interacting matter using energetic hadrons and jets

- Flavor hierarchy of parton energy loss is encoded in the hadron R_{AA}, though not explicit due to the interplay between energy loss and NLO contributions
- The jet EEC is an excellent observable to study the dead cone effect on parton splitting (magnitude and peak position of EEC) in both pp and AA collisions
- Jet and heavy flavor observables can constrain various QGP properties

Thank. you!