

Recent highlights on heavy-flavour measurements: focusing on ALICE results from a personal selection

> Cristina Terrevoli, INFN Bari Wuhan, China - 19 - 24 October 2024

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics

Goal of the ALICE experiment at the LHC

Study of the matter created at extreme conditions of temperature and energy density: quark-gluon plasma (QGP)

Goal of the ALICE experiment at the LHC

- characterization of the QGP created in heavy-ion collisions, understand QGP-like effects in smaller collision systems
- but also test of pQCD
- and much more...

The ALICE experiment: a journey through QCD Eur. Phys. J. C 84, 813 (2024)

C. Terrevoli

Study of the matter created at extreme conditions of temperature and energy density: quark-gluon plasma (QGP)

Heavy Flavor (charm and beauty) as probes of the QGP

Heavy Flavor (charm and beauty) as probes of the QGP

- formation time ~1/m_q: τ_b ~0.12 fm/c < τ_c ~0.39 fm/c < τ_{QGP} ~1.5 fm/c^{[1][2]}
 - production restricted to initial hard scatterings
 - long relaxation time τ_Q , possibly comparable to the fireball lifetime (~ few fm/c)
- $m_Q >> \Lambda_{QCD}$
 - their production cross section calculable with pQCD calculations

C. Terrevoli

[1] Ann.Rev.Nucl.Part.Sci. 69 (2019) 417-445 [2] F.M Liu et al., PRC 89, 034906 (2014)

Heavy Flavor (charm and beauty) as probes of the QGP

• $m_Q >> T_{QGP}$

- formation time ~1/m_q: τ_b ~0.12 fm/c < τ_c ~0.39 fm/c < τ_{QGP} ~1.5 fm/c^{[1][2]} production restricted to initial hard scatterings
- long relaxation time τ_Q , possibly comparable to the fireball lifetime (~ few fm/c)
- $m_Q >> \Lambda_{QCD}$
 - their production cross section calculable with pQCD calculations

C. Terrevoli

- HQ as tools to provide constraints to pQCD calculations,
- investigate onset of QGP formation in smaller systems,
- probes of the opacity of QGP, test of the degree of thermalization
 - For detailed discussions: A. Rossi: hadronization F. Grosa: QGP characterization
- In this talk: overview of recent results from ALICE, *focusing* on new Run 3 measurements and few points to be addressed with the new data

[1] Ann.Rev.Nucl.Part.Sci. 69 (2019) 417-445 [2] F.M Liu et al., PRC 89, 034906 (2014)

Upgrade of the ALICE detectors during LS2

	Run 4				LS 4		Run	
28	2029	2030	2031	2032	2033	2034	2035	I

Wuhan, 23/09/2024

.

ALICE Detector in Run 1 and Run 2

Key features for HF measurements:

- precise vertex separation, low momentum tracking
- excellent PID

C. Terrevoli

ALICE Detector in Run 1 and Run 2

C. Terrevoli

- Main features of the ITS 2 upgrade:
 - first layer closer to the beam-pipe: from 3.9 cm to 2.3 cm
 - reduced material budget: from 1.14% X₀ to 0.36% X₀ per layer
 - reduced pixel size: from 50x425 μ m² to **29x27** μ m²
 - reduced multiple scattering, improved spacial resolution and tracking precision
 - additional layer
 - improved efficiency and p_T resolution at low p_T

ITS upgrade: ITS2

C. Terrevoli

Upgrade of the Inner Tracking System: ITS 2

Impact parameter resolution in Run 3

Improved impact parameter resolution: by a factor of ~ 3 in $r\phi$, ~ 5 in z

Improved resolution for D meson reconstruction

...and upgrade of the readout

- fast readout for the ITS 2^[1]:
 - rate up to 100 kHz (Pb-Pb, was 1kHz) and 400 kHz for pp
- **GEM readout** for the **TPC**^[2]
- **new** Muon Forward Tracker (MFT)^[3]
- **new** Forward Interactions Trigger (**FIT**)^[4]
- new Event Processing Farm
- upgraded readout for most detectors

continuous readout at high rate: more collected statistics

ALICE upgrade during LS2 <u>ITS</u> [1] TPC GEM upgrade [2] MFT [3] FIT[4]

C. Terrevoli

- All collisions are stored for main detectors:
 - no collision events, but stream of data split in 'timeframes'
 - in 2023, in Pb-Pb: collected 40x minimum bias, 6x central wrt Run 1 + 2

See. F. Ronchetti talk

Software trigger: strategy for HF measurements

New offline trigger strategy for beauty/rare candidates Software triggers: flag collisions based on the presence of interesting signals

- rare baryons and beauty hadrons: $\Omega_c^0, \Xi_c^0 \rightarrow \Xi \pi, B^+, B^0, B_{s^+}, \Lambda_b^0$
- and more (p- Λ_c , double charm production, D_s resonances...)

Steps of the software trigger:

Online calibration + offline reconstruction and selection:

- single track selection
- combinatorics (->reconstruction)
- applying p_T , mass and topological cuts
- Machine Learning tecniques, PID

C. Terrevoli

First measurement of the exclusive B meson decays in ALICE

Access to fully reconstructed beauty meson decays at midrapidity, down to very low p_T

C. Terrevoli

First measurement of the exclusive B meson decays in ALICE

Access to fully reconstructed beauty meson decays at midrapidity, down to very low p_{T}

overview of recent open-HF measurements

Run 3: pp collisions

Large masses -> Large squared momentum transfer, $Q^2 ->$ perturbative QCD

Factorization approach

$\sigma_{AB \rightarrow H} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab}$

Parton distribution functions

Fragmentation fractions: assumed to be universal across collision systems and extracted from e⁻e⁺, e⁻p measurements

Measurements of relative abundances of particle species are sensitive to hadronisation mechanisms.

Testing pQCD with heavy quarks

$$\bigotimes \sigma_{ab \to q\bar{q}} (x_a, x_b, Q^2) \bigotimes D_{q \to H} (z = p_H/p_q, Q^2)$$

Hard scattering cross section Fragmentation function

For detailed discussion, see A. Rossi talks

baryon-to-meson ratios: testing pQCD and heavy-quark fragmentation

baryon-to-meson ratio

LI-DER-563938

C. Terrevoli

baryon-to-meson ratios: testing pQCD and heavy-quark fragmentation

Models based on standard string Lund lacksquarefragmentation and with fragmentation functions constrained by ee, ep measurements, fail to describe data (PYTHIA Monash

Fragmentation of heavy quarks (c,b) is not an universal process among different collision systems: hadronic environment plays a role!

average measurements at e-e+

30

Charm Fragmentation Fractions

First measurement of charm fragmentation fractions in pp and p-Pb collisions:

- all ground states of charm hadrons measured with high precision
- D⁰, D⁺, Λ^+_c measured down to $p_T=0$ in pp collisions

Charm Fragmentation Fractions

First measurement of charm fragmentation fractions in pp and p-Pb collisions:

- all ground states of charm hadrons measured with high precision
- D⁰, D⁺, Λ^+_c measured down to $p_T=0$ in pp collisions

Points to be addressed:

- improve precision of Ξ^{0}_{c} (and Ξ^{+}_{c}) measurements
- measurements to be done down to $p_T=0$ for all the species (to be independent on extrapolations based on theoretical models)

Beauty fragmentation at mid-rapidity? Production cross section of beauty meson decays down to low p_T with Run 3 data: stay tuned!

C. Terrevoli

Multiplicity dependence for heavy-flavour baryon/meson ratios at low intermediate momentum, at midrapidity and forward rapidity

LM: low multiplicity

C. Terrevoli

HM: high multiplicity

LM: low multiplicity

C. Terrevoli

HM: high multiplicity

- p_{T} -integrated Λ_c/D^0 independent on multiplicity from small to large systems
- mesons in pp?

Λ⁰_b/B⁰ at forward rapidity shows an increasing trend at very low multiplicity: baryon enhancement over

LM: low multiplicity

C. Terrevoli

HM: high multiplicity

different hadronisation mechanisms for charm and beauty vs multiplicity and across collision systems? is there a rapidity dependence of the hadronisation mechanisms?

- defined!)
- charm measurements at midrapidity to be extended to lower multiplicity
 - investigate multiplicity dependence for more baryon species
- measure beauty vs multiplicity at midrapidity

C. Terrevoli

worth to define **comparable multiplicity estimators** (and same 'x-axis' observable to be

- defined!)
- charm measurements at midrapidity to be extended to lower multip
 - investigate multiplicity dependence for more baryon species
- measure beauty vs multiplicity at midrapidity

C. Terrevoli

worth to define **comparable multiplicity estimators** (and same 'x-axis' observable to be

models implementing evolution of hadronisation from small to large systems with multiplicity may help

Provide tighter constraints for hadronisation models

Measurements of non-prompt fractions for D mesons and Λ_c baryons

important inputs for charm hadron cross section measurements

Increased precision wrt Run 2 and more granular results

Access to higher mass charm baryon resonances

Profiting of the large Run 3 statistics in pp: first measurement at LHC of the charm baryon resonances $\Sigma_c^{0,++}$ (2520)

C. Terrevoli

ALI-PREL-574270

Predictions: challenge to reproduce the $\Sigma_c^{0,++}$ state ratio in pp—> further constraints to pQCD models see A. Rossi talks

overview of recent open-HF measurements

Run 3

C. Terrevoli

Which is the degree of thermalization of HQs in the medium?

charm V₂

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$

$$\frac{\partial N}{\partial_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[n(\varphi - \Psi_{\mathrm{n}})] \right\}$$

• Strange and non-strange D mesons v₂ measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.36$ TeV, compatible within uncertainties • x4 larger statistics more than Run 2, x5 more statistics will

Run 3

C. Terrevoli

Which is the degree of thermalization of HQs in the medium?

charm v₂

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$

$$\frac{{}^{3}N}{p_{\rm T}} = \frac{1}{2\pi} \frac{{\rm d}^{2}N}{p_{\rm T} {\rm d}p_{\rm T} {\rm d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\rm n} \cos[n(\varphi - \Psi_{\rm n})] \right\}$$

\blacksquare Positive v_2 of hadrons with charm: charm quarks largely thermalize in QGP until hadronization

C. Terrevoli

Which is the degree of thermalization of HQs in the medium?

$$v_2 = \langle \cos[2(\varphi - \Psi_2)] \rangle$$

$$\frac{{}^{3}N}{p_{\rm T}} = \frac{1}{2\pi} \frac{{\rm d}^{2}N}{p_{\rm T}{\rm d}p_{\rm T}{\rm d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\rm n} \cos[n(\varphi - \Psi_{\rm n})] \right\}$$

\blacksquare Positive v_2 of hadrons with charm:

charm quarks largely thermalize in QGP until hadronization

- smaller v₂ of open-beauty hadrons
 - from recombination with light quarks?
 - Does beauty flow?

Run 3

... and charm baryon v₂?

Which is the degree of thermalization of HQs in the medium?

First look at the $\Lambda_c v_2$: HF *v*₂ measurements extended to the charm baryon sector

C. Terrevoli

What next? ALICE Upgrade roadmap

ALICE Upgrade: ITS 3 in Run 4 and ALICE 3 in Run 5-6

Further improvements of the pointing resolution with ITS3 (ALICE 2.1) and ALICE 3

ALI-SIMUL-491785

C. Terrevoli

Wuhan, 23/09/2024

39

Physics program with HF: investigating multi-body QCD from pp to Pb-Pb collisions

- testing pQCD, characterizing QGP, and its onsets in smaller collision systems
- LS2 detector upgrades performing very well: good harvest from first Run3 data taking
 - several measurements profiting of the larger statistics:
 - better precision, more differential measurements, new observables
 - Important questions to be addressed already in Run3, but also in a near future:
 - Ambitious upgrade program, for further understanding of QGP and QCD matters:
 - Upgrades for Run 4 and Run 5-6 in preparation, progressing well!

Conclusions

Thank you for your attention!

backup

Nuclear modification factors with HF hadrons

C. Terrevoli

Nuclear modification factors with HF hadrons

 R_{AA} not determined just by 'energy loss' Interplay of energy loss, collective motion and hadronization mechanisms

C. Terrevoli

$$_{d,s} > \Delta E_c > \Delta E_b$$

$$_{AA}(D) < R_{AA}(B)$$

Better precision expected from Run 3 and access to pt=0 for more hadrons, including heavy-flavor baryons!

Testing pQCD in the beauty sector

Total beaty production cross section: lie on upper edge of pQCD, better described by NNLO Beauty fragmentation fractions (here f_s/f_u+f_d) are compatible with those measured in ee and ep collisions

arXiv:2402.16417

pT-integrated measurement at midrapidity based on the production cross section of non-prompt D⁰, D⁺, Λ_c access to Beauty measurement avaible with Run 3 data: stay tuned

C. Terrevoli

Fragmentation fractions for beauty baryons Λ_b

PHYS. REV. D 99, 052011 (2019)

Studying thermalization: v₂ of heavy-flavour hadrons

C. Terrevoli

 \rightarrow Positive v_2 of hadrons with charm observed charm quarks largely thermalize in QGP until hadronization smaller v₂ of open-beauty hadrons

• beauty v₂ measured via leptons from HF hadron decays and non-prompt D, and quarkonia: Y

 $0 \sim V_2^{(Y(1S)} < V_2^{(b->e)} \sim V_2^{(incl J/\Psi)} < V_2^{(D)} < V_2^h at low p_T$

• Open beauty-hadrons $v_2 > 0$: for from recombination with light quarks? • **Bottomonia:** $v_2^{(Y(1S))} = 0$: negligible recombination. Does beauty flow?

access to v₂ of beauty and charm baryons in Run 3

ITS 3: ultra-light fully cylindrical tracking layers

Requirements

Replacement of **ITS 2** Inner Barrel with 3 layers of curved 50 µm thick wafer-scale MAPS

- Air cooling and ultra-light mechanical supports
- Reduced material budget of 0.09% X₀ instead of 0.36% X₀ per layer
- Smaller radius of the innermost layer:

19 mm instead of 23 mm

ITS 3 TDR - CERN-LHCC-2024-003 ITS3 physics perfomance studies: <u>ALICE-PUBLIC-2023-002</u>

ALICE 3 in Run 5 and Run 6

- Compact, with low-mass all-silicon tracker
 - Retractable vertex detector
 - 0.1% X₀/layer, 2.5 μm spatial resolution
- Excellent vertex reconstruction and PID capabilities over large acceptance (-4 < η < 4)
 - TOF: time resolution 20 ps, low material budget 1-3% X₀/layer
 - RICH: extending PID to higher p_{T}
 - MID: muon and photon ID
- Continuous read-out and online processing

C. Terrevoli

$R \approx 5$ mm at top energy, $R \approx 15$ mm at injection energy

ALICE 3 in Run 5 and Run 6

CERN-LHCC-2022-009

Beauty hadron reconstruction

- Unbinned log-likelihood fit
- Fit functions:
 - Signal: Gaussian 0
 - Combinatorial background: Ο exponential
 - Correlated backgrounds: 0 template from MC parameterised with Kernel Density Estimation Main contributions:

i.
$$B^0 \rightarrow D^{*-}\pi^+ \rightarrow D^-\pi^+\pi^0$$

ii. $B^0 \rightarrow D^{*-}\pi^+ \rightarrow D^-\pi^+\gamma$
ii. $B^0 \rightarrow D^-(\rightarrow K^+K^-\pi^-)\pi^+$

Dedicated triggers for D_s resonances

C. Terrevoli

 $^{+} \rightarrow D^{*} K_{s}^{0} \text{ and } D_{s2}^{*+} \rightarrow D^{+} K_{0}^{s}$ + D_{s1}

Figure 4: Ratio of Λ_b^0 to B^0 cross-sections as a function of $p_{\rm T}$, in bins of a) the total multiplicity measured in the VELO detector and b) the backwards track multiplicity. The purple point shows the value measured in $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$ reactions at LEP [61].

C. Terrevoli

beauty Fragmentation Fraction

Min He, Hard Probes 2024

https://indico.cern.ch/event/1339555/ contributions/6040877/attachments/ 2932131/5149428/ M.He_HP2024_V2.pdf

all-baryons

