

Classical description of quark interactions

Changsha University Zhiguang Tan(谭志光)

Classical interaction

Universal gravitation

$$F = G \frac{Mm}{R^2} = m \frac{v^2}{R}$$

Electrostatic attraction

$$F = k \frac{Qq}{R^2} = m \frac{v^2}{R}$$

Potential model

Classical description

Parameters and results

$$V(r) = -\frac{a}{r} + br$$
 Physical review D, 1980,21(1): 203.

$$> V(r) = k_0 e^{-\alpha^2 r^2/2} + cr - \frac{a}{r} - \frac{b}{r^2}$$

To Phys. J, 2019, 3: 197-215

$$\blacktriangleright V(r) = ar^2 + br - \frac{c}{r} + \frac{d}{r^2} + e$$

Modern Physics Letters A, 2022, 37(02): 2250010.

$$\nabla^2 \psi + \frac{2\mu}{\hbar^2} [E - V(r)] \psi(r, \theta, \phi) = 0$$

$$M_{nl} = m_{q1} + m_{q2} + E_n$$

Color charge

Three element color charges and their anti-charges

• $c_r \equiv e^{\theta i}$ • $c_g \equiv e^{\left(\theta + \frac{2\pi}{3}\right)i}$ • $c_g \equiv e^{\left(\theta - \frac{2\pi}{3}\right)i}$ • $c_b \equiv e^{\left(\theta - \frac{2\pi}{3}\right)i}$ • $c_{\overline{b}} \equiv e^{\left(\theta - \frac{\pi}{3}\right)i} = -c_b$

Mesons and baryons are color neutral

$$c_i + c_{\overline{i}} = 0$$
 $c_r + c_g + c_b = 0$

Multicolored charged particles

$$C = \sum_{i=r,g,b} (n_i \epsilon_g + die_i q_i)$$
ark

2. Classical description

Interaction between two color charge

$$\vec{F}_{c_1c_2} = Z \frac{c_1 \cdot c_2}{r^3} \vec{r} \implies E_p = -\frac{Z}{r}$$

6 -

The dot product between two unit color charges

$$c_i \cdot (\pm c_j) = \begin{cases} \pm 1 & i = j \\ \mp \frac{1}{2} & i \neq j \end{cases}$$

Interaction between a quark and a Neutral particle

The color magnetic field

✓ Circular motion of color charge forms color flow $I_c = |c| \frac{v}{2\pi a}$ $B_c = \int_l T \frac{I_c d\vec{l} \times \vec{r}}{r^3}$ ✓ Circular color flow excited color magnetic field $B_{cz} = 2TI_c [\frac{1}{a-r}E(k) + \frac{1}{a+r}K(k)]$

✓ The color magnetic field energy

$$E_{Bc} = 22.97TI_c^2 r$$

Interaction from spin

- Color flow attracts in the same direction and repels in the opposite direction
- Treating spin as the rotational motion of color charge
- the harmonic oscillator potential caused by spin

$$F_{S_1S_2} = -k(r - r_0) = -\frac{1}{2}m\omega^2(r - r_0)$$
$$E_S = \frac{1}{2}kA^2 = \frac{1}{2}k(r_M - r)^2$$
$$= \frac{1}{2}kr_M^2 + \frac{1}{2}kr^2 - kr_Mr$$

Quantization hypothesis

$$\vec{F}_{C_1 C_2} = \frac{Z \frac{C_1 \cdot C_2}{r^3}}{r^3} \vec{r} \qquad \vec{B}_c = \int_l \frac{I_c d\vec{l} \times \vec{r}}{r^3}$$

>
$$M_{n,L} = M - \frac{Z}{2r_n} + 0.5818T \frac{Z}{mr_n^2} + (L + \frac{1}{2})\hbar\omega$$

with
$$M = m_Q + m_q$$
, $m = \frac{m_q m_q}{M}$

> Using some experimental data on mass and radius of $\pi \& \rho$ from PDG to estimate Z and T

$n^{2S+1}L_j$	Name	$q\bar{q'}$	$\sqrt{\langle r_1 \rangle^2}$ (fm)	$M_1(\text{GeV})$
$1^{1}S_{0}$	π^{\pm}	ud	0.6626	0.1400
$1^{1}S_{1}$	ρ^{\pm}	ud	0.7483	0.7750

 $Z \approx 1.33 \times 10^{-26} Nm^2$, $T \approx 4.43 \times 10^{-44} Ns^2$

3. Parameters and results

Calculation on some other mesons' radii and compare with literatures

$n^{2S+1}L_j$	Name	$q\bar{q'}$	$M({ m GeV})$	$\sqrt{r^2}$ (fm)[Ref.]	this work
$1^{1}S_{0}$	π^{\pm}	ud	0.140	0.6626	0.6621
$2^{1}S_{0}$	$\pi(1300)^{\pm}$	ud	1.300	$0.59 \sim 0.92$ 16	1.038
$3^{1}S_{0}$	$\pi(1800)^{\pm}$	ud	1.812		1.256
$1^{3}S_{0}$	ρ^{\pm}	ud	0.775	0.7483	0.7475
$2^{3}S_{1}$	$\rho(1450)^{\pm}$	ud	1.465		1.310
$3^{3}S_{1}$	$\rho(1900)^{\pm}$	ud	1.900		1.568
$1^{1}S_{0}$	K^{\pm}	us	0.494	0.58[17]	0.554
$1^{1}S_{0}$	h^0	ss	0.701	0.36 18	0.417
$1^{1}S_{0}$	D^{\pm}	cd	1.87	0.426 19	0.557
$1^{1}S_{0}$	D^0	cu	1.865?		0.692
$1^{1}P_{1}$	$D_1(2430)^0$	cu	2.412		1.573
1^1D_2	$D_2(2740)^0$	cu	2.740		1.992
$1^{1}S_{0}$	D_s^+	cs	1.945	0.26 18	0.277
$1^{1}P_{1}$	$D_{s1}(2460)^{\pm}$	cs	2.46		0.435
$1^{1}S_{0}$	B^{\pm}	ub	5.279?	0.6219	0.690
$1^{1}S_{0}$	η_c	cc	2.984	0.2020	0.174
$1^{3}S_{1}$	J/Psi	cc	3.097	0.212 20	0.199
$1^{1}P_{1}$	h_c	cc	3.525	0.26520	0.267
$1^{1}S_{0}$	η_b	bb	9.399	0.0719	0.064

Reference data source

- [15] C. Patrignani, K. Agashe, G. Aielli et al., (Particle Data Group), Review of Particle Physics. Chin. Phys. C 40, 100001 (2016).doi:10.1088/1674-1137/40/10/100001
- [16] Höll A, Krassnigg A, Maris P, et al. Electromagnetic properties of ground-state and excited-state pseudoscalar mesons[J]. Physical Review C - Nuclear Physics, 2005, 71(6): 065204.
- [17] Krutov A F, Polezhaev R G, Troitsky V E. Radius of the meson determined from its decay constant[J]. Physical Review D, 2016, 93(3): 036007.
- [18] Hernández-Pinto R J, Gutiérrez-Guerrero L X, Bashir A, et al. Electromagnetic form factors and charge radii of pseudoscalar and scalar mesons: A comprehensive contact interaction analysis[J]. Physical Review D, 2023, 107(5): 054002.
- [19] Hwang C W. Charge radii of light and heavy mesons[J]. The European Physical Journal C-Particles and Fields, 2002, 23: 585-590.
- [20] R. J. Hernandez-Pinto, L. X. Gutierrez-Guerrero, A. Bashir, M. A. Bedolla, and I. M. Higuera-Angulo, Phys. Rev. D 107 5, 054002, (2023).

- we propose a classical expression based on color charge interactions between a pair of quarks.
- Especially, the design of the superposition and dot multiplication of quark color charges predicts the existence of non unit color charge elementary particles.
- The estimated vacuum static color gravitational constant Z and color magnetic field constant T presented in this talk are quite rough. However, we are eager to obtain more accurate values as soon as possible.
- we hope that the classic approach in this report can provide a simple and visualizable approach to study the interior of microscopic particles.

Thank you !

$$B_{cx} = TI_c ar \cos \theta \int_0^{2\pi} \frac{\cos \varphi d\varphi}{(r^2 + a^2 - 2ra \sin \theta \cos \varphi)^{3/2}},$$

$$B_{cy} = 0,$$

$$B_{cz} = TI_c \int_0^{2\pi} \frac{a^2 - ar \sin \theta \cos \varphi d\varphi}{(r^2 + a^2 - 2ra \sin \theta \cos \varphi)^{3/2}}.$$
 (14)

Points on the color flow plane, $\theta = \pi/2, \sin \theta = 1, \cos \theta = 0$, therefore, $B_{cx} = B_{cy} = 0$.

$$B_{cz} = TI_c \int_0^{2\pi} \frac{a^2 - ar \cos \varphi d\varphi}{(r^2 + a^2 - 2ra \cos \varphi)^{3/2}} = 2TI_c \left[\frac{1}{a - r} E(k) + \frac{1}{a + r} K(k) \right] = 2TI_c X(a, r).$$
(15)

$$a = 0.5, \quad X_i = 1.2215 \frac{1}{a-r} + 9.9248(a-r),$$

$$X_o = -0.8433 \frac{1}{r-a} + 5.0440(r-a);$$

$$a = 0.6, \quad X_i = 1.2001 \frac{1}{a-r} + 7.0576(a-r),$$

$$X_o = -0.8593 \frac{1}{r-a} + 3.6412(r-a);$$

$$a = 0.7, \quad X_i = 1.1833 \frac{1}{a-r} + 5.2816(a-r),$$

$$X_o = -0.8717 \frac{1}{r-a} + 2.7549(r-a);$$

$$a = 0.8, \quad X_i = 1.1696 \frac{1}{a-r} + 4.1042(a-r),$$

$$X_o = -0.8817 \frac{1}{r-a} + 2.1587(r-a);$$

$$a = 0.9, \quad X_i = 1.1583 \frac{1}{a-r} + 3.2828(a-r),$$

$$X_o = -0.8900 \frac{1}{r-a} + 1.7381(r-a);$$

$$a = 1.0, \quad X_i = 1.1487 \frac{1}{a-r} + 2.6866(a-r),$$

$$X_o = -0.8970 \frac{1}{r-a} + 1.4301(r-a).$$

mesons -> baryons -> tetraquarks ---> pentaquarks ----> multiquarks -----