Quarkonium and open charm photoproduction in Pb-Pb collisions

Ionut-Cristian Arsene University of Oslo

Workshop on Advances, Innovations, and Future Perspectives in High Energy Nuclear Physics 19-24 October 2024, Wuhan, China

Outline

- Introduction
- Exclusive J/ψ photoproduction in UPC
- J/ψ photoproduction in PC
- Open charm and J/ψ photoproduction in single-gap UPC
- Outlook

Nuclear electro-magnetic field mediated interactions

- EM field of nuclei: beam of quasi-real photons
 - Photons achieve a large boost at the LHC

Nuclear electro-magnetic field mediated interactions

- EM field of nuclei: beam of quasi-real photons
 - Photons achieve a large boost at the LHC
 - Possibility of studying several interactions
 Photon + photon

ATLAS, Nature Physics 13 (2017) 852

Nuclear electro-magnetic field mediated interactions

S.Klein, H.Mantysaari, Nature Rev. Physics 1 (2019) 662

- EM field of nuclei: beam of quasi-real photons
 - Photons achieve a large boost at the LHC
 - Possibility of studying several interactions
 - Photon + photon
 - Photon + nucleus
 - Photon + proton

Coherent photoproduction

- Photon couples to the entire nucleus
- Target nucleus remains intact
- Production of just one vector meson
- > <p_T>(ψ) ~ 60 MeV/c

Coherent photoproduction

- Photon couples to the entire nucleus
- > Target nucleus remains intact
- Production of just one vector meson
- > <p_T>(ψ) ~ 60 MeV/c

Incoherent photoproduction

- Photon couples to one nucleon
- ➤ Target breaks-up → neutron emission measured in ZDCs
- > <p_T>(ψ) ~ 500 MeV/c

S.Klein, H.Mantysaari, Nature Rev. Physics 1 (2019) 662

Coherent photoproduction

- Photon couples to the entire nucleus
- Target nucleus remains intact
- Production of just one vector meson
- > <p_T>(ψ) ~ 60 MeV/c

Incoherent photoproduction

- Photon couples to one nucleon
- ➤ Target breaks-up → neutron emission measured in ZDCs
- $\sim < p_T > (\psi) \sim 500 \text{ MeV/c}$

Both processes probe the nuclear parton distributions down to $x \sim 10^{-5}$

- Coherent: "average" nuclear density
- Incoherent: fluctuations of nucleon/subnucleon gluon density

Coherent J/ ψ photoproduction in UPCs

- Coherent and incoherent components extracted using template fits
- Midrapidity: coherent J/ ψ (x~10⁻³) compatible with models predicting moderate shadowing
- Forward rapidity: emitter-target ambiguity \rightarrow folding of low and high-x contributions

Coherent J/ ψ photoproduction in UPCs

ALICE, JHEP 10 (2023) 119

See talk by Zhenyu on Sunday

- Emitter-target ambiguity solved using independent measurements in ZDC neutron classes
- High-*x* (low *W*) compatible with IA or Glauber calculations
- Low-*x* (high *W*) better described by models implementing shadowing or saturation

Vector meson photoproduction in UPCs

Eskola et al., PRC 106 (2022) 035202

Mantysaari, Penttala, PLB 823 (2021) 136723 Luszczak, Schafer, PLB 856 (2024) 138917

- Full pQCD NLO calculation
 - Different gluon and guark PDF sensitivity wrt LO
- Calculations in the dipole picture using NLO describe well coherent J/ ψ data

- Interactions via EM fields occurs in parallel to the hadronic collision
 - Different photon flux
 - Modified photon-nucleus cross-section ?

- Interactions via EM fields occurs in parallel to the hadronic collision
 - Different photon flux
 - Modified photon-nucleus cross-section ?
- Phenomenology of the production cross section ongoing
 - Role of spectator (S) and participant (N) nucleons
 - Survival of the coherence condition
 - Time ordering of the hadro and photoproduction

- Interactions via EM fields occurs in parallel to the hadronic collision
 - Different photon flux
 - Modified photon-nucleus cross-section ?
- Phenomenology of the production cross section ongoing
 - Role of spectator (S) and participant (N) nucleons
 - Survival of the coherence condition
 - Time ordering of the hadro and photoproduction
 - Interference due to the emitter-target ambiguity
 S.Klein and J.Nystrand, PRL84(2000)11

 $\frac{\mathrm{d}\sigma_{\mathrm{PbPb}}}{\mathrm{d}y} = n_{\gamma}(y, \{b\})\sigma_{\gamma\mathrm{Pb}}(y) + n_{\gamma}(-y, \{b\})\sigma_{\gamma\mathrm{Pb}}(-y)$

- Interactions via EM fields occurs in parallel to the hadronic collision
 - Different photon flux
 - Modified photon-nucleus cross-section ?
- Phenomenology of the production cross section ongoing
 - Role of spectator (S) and participant (N) nucleons
 - Survival of the coherence condition
 - Time ordering of the hadro and photoproduction
 - Interference due to the emitter-target ambiguity
 - Help solving the emitter-target ambiguity using measurements in different centrality classes

J.G.Contreras, PRC96(2017)015203

J/ ψ photoproduction in AA collisions at $b < R_1 + R_2$

- In Run 1, ALICE reported an excess of J/ ψ wrt expectations from hadro-production in peripheral collisions at very low p_T
 - Good agreement with STARLight simulations
 - Similar observation by STAR STAR, PRL 123 (2019) 132302

Coherent photoproduction, data vs models

- Data tends to favor models where both the emitted photon flux and photonuclear cross section exclude the participant region
- VDM modifies only the photon flux but still gets a good agreement to data

$p_{\rm T}$ dependence of J/ ψ photoproduction at mid-y

- ADCCCT

Zha et al., PRC 99 (2019) 061901

- Model calculations using destructive interference compatible with the data
- Modifications in the differential cross section with centrality still difficult to disentangle with the current datasets at mid-y

Di-jet production in photo-nuclear collisions

Direct photon scattering

Resolved photon scattering

- One gluon exchange
- Cross sections directly proportional to gluon density in the nucleon or nucleus
- Kinematics of the hard scattering can be determined with a good precision

Di-jet production in photo-nuclear collisions

- Events are tagged by using their special topology ("single gap")
 - Large rapidity gap in particle production
 - No neutrons in the photon direction ZDC
 - Neutron emission in the other ZDC + nuclear fragmentation

Di-jet production in photo-nuclear collisions

See talk by Qipeng on Sunday

- Recent ATLAS measurement indicates the potential for constraining nuclear PDFs
- Coverage down to x~10⁻³

Heavy quark pair photoproduction

- Pairs of heavy quarks (charm) can be also produced in topologically similar processes
- Large mass of charm quarks \rightarrow pQCD applicable down to $p_T = 0$
 - Huge cross-section available ~ 2b

S.Klein, J.Nystrand, R.Vogt, PRC 66 (2002) 044906

- Access to gluon PDFs down to x~10⁻⁴ with ALICE at midrapidity
 - Constrain shadowing and saturation models

Heavy quark pair photoproduction

- Pairs of heavy quarks (charm) can be also produced in topologically similar processes
- Large mass of charm quarks \rightarrow pQCD applicable down to $p_T = 0$
 - Huge cross-section available ~ 2b

S.Klein, J.Nystrand, R.Vogt, PRC 66 (2002) 044906

- Preliminary results on D⁰ mesons by CMS
- Good agreement with FONLL + nPDF

Single-gap event selection in ALICE

Single-gap event selection in ALICE

 $+\eta$

ALI-PERF-579941

FT0A amplitude [ADC channel]

Single-gap event selection in ALICE

- Event activity η gap configured by requiring
 FT0 amplitudes below threshold on one side and above on the other
- Neutron emission classes can be selected using the ZDC amplitudes
 - Individual neutron emissions can be reconstructed up to several neutrons

Charged track distributions in single-gap events

- Asymmetric pseudo-rapidity distributions for charged particles in the barrel
 - Expected in single-gap events

$D^0 + \overline{D^0}$ measurement in ALICE

- Very good performance of $\mathsf{D}^{\scriptscriptstyle 0}$ signal in $\mathsf{K}\pi$ decay channel
- Coverage down to $p_T = 0$

Reconstruction performance for D*+/-, D+/-

 Reconstruction of higher mass open-charm: D^{*+/-}, D^{+/-}

Reconstruction performance for $D^{++/-}$, $D^{+/-}$ and J/ψ

ALI-PERF-579589

Reconstruction of higher mass open-charm: D*+/-. D+/and J/ψ in the e⁺e⁻ channel

Counts per 0.4 MeV/c²

Outlook

The ALICE detector (Run 3 setup)

The ALICE detector + FoCal in Run 4

J/ ψ and ψ (2S) reconstruction in Pb-Pb

- Ground and excited charmonium states can be separated
- Coherent and incoherent components can be extracted from the p_T distribution
- Very large photoproduced quarkonia sample expected to be measured with FoCal

Coherent J/ ψ photoproduction in Pb-Pb UPC

- Extension of the measurement to $y \sim 5.5$ with very good stat. uncertainties
- Interference between quark and gluon contributions largest in the FoCal acceptance Flett, Jones, Martin, Ryskin and Teubner, arXiv:1908.08398

Photoproduction off protons $\sigma(\gamma+p)$ at high-W

- FoCal extends coverage in W_{yp} up to about 2 TeV and nearly as low as $x \sim 10^{-6}$
- Large lever arm for discriminating linear vs saturation scenarios

Saturation model constrains with p-Pb UPC data

- Very good discrimination power between linear vs saturation models:
 - Coherent production ratio of $\psi(2S) / J/\psi$
 - Ratio of dissociative / exclusive production

- Exclusive J/ψ photoproduction differential measurements in UPCs constrain gluon (and quark) distributions in nuclei
 - Models implementing shadowing or saturation tend to agree with data at low-x, but not in detail
 - New calculations at NLO suggest large differences with LO and seem to explain coherent J/ψ
- Progress in measurements of coherent J/ψ photoproduction in peripheral collisions
 - Model calculations seem to favour the scenario in which both the photon flux and photo-nuclear crosssection need to exclude the participant region
 - Possible new probe of QGP ?
- Big progress in measurements of single-gap UPC events
 - Di-jets: ATLAS
 - Open charm and quarkonia: ALICE and CMS
- ALICE outlook:
 - large increase in datasets during Run-3 and 4
 - FoCal upgrade will extend kinematic reach for exclusive production down to $x \sim 10^{-6}$

ALI-SIMUL-514006

- Expected integrated luminosity in Pb–Pb: $\sim 10 \text{ nb}^{-1}$ at both mid and fwd-y
- In central collisions (0-10%), expected significance of coherent yields of 5-10
- Below 10% centrality:
 - > Precise measurements of p_{T} spectrum, azimuthal correlations, polarization

Vector meson photo-production in UPC

- High efficiency (~80%) for J/ψ measurement in e⁺e⁻
- Coverage up to *y*~5.5

Pb-Pb @ 5.36 TeV, L = 7/nb

VM	$\sigma(\mathrm{Pb} + \mathrm{Pb} \rightarrow \mathrm{Pb} + \mathrm{Pb} + \mathrm{VM})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
ρ^0	5.0 b	$20 \ \mu b$	140,000
ϕ	440 mb	$10~\mu{ m b}$	70,000
${ m J}/\psi$	$39 \mathrm{~mb}$	$53~\mu{ m b}$	$370,\!000$
$\psi(2S)$	$7.5 \mathrm{~mb}$	$1.1 \ \mu \mathrm{b}$	7,500
$\Upsilon(1S)$	94 μb	5.0 nb	35

p-Pb, Pb-p @ 8.8 TeV, L = 150/nb

VM	$\sigma(p + Pb \rightarrow p + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
		$\mathbf{p} \to \mathbf{FoCal}$	$\mathbf{p} \to \mathbf{FoCal}$
ρ^0	35 mb	140 nb	21,000
ϕ	$1.7 \mathrm{\ mb}$	51 nb	7,700
${ m J}/\psi$	$98 \ \mu b$	400 nb	60,000
$\psi(2S)$	$16 \ \mu \mathrm{b}$	8.9 nb	1,300
$\Upsilon(1S)$	220 nb	0.38 nb	60
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$
ρ^0	35 mb	17 nb	2,600
ϕ	$1.7 \mathrm{~mb}$	5.3 nb	800
${ m J}/\psi$	$98 \ \mu b$	36 nb	$5,\!400$
$\psi(2S)$	$16 \ \mu \mathrm{b}$	$0.53 \mathrm{~nb}$	80
$\Upsilon(1S)$	220 nb	$0.67 \ \mathrm{pb}$	~ 0

J/ψ and ψ ' reconstruction in p-Pb and Pb-p Pb-p (high- W_{vp}) p-Pb (low- W_{vp}) Counts Counts ALICE simulation, Pb-p $\sqrt{s_{NN}}$ = 8.79 TeV ALICE simulation, p-Pb $\sqrt{s_{NN}}$ = 8.79 TeV STARLight, J/ ψ and $\psi(2S) \rightarrow e^+e^-$ STARLight, J/ ψ and ψ (2S) $\rightarrow e^+e^-$ 3.4 < y < 5.8, p_<200 MeV/c _3.4 < y < 5.8, p_<200 MeV/c 10^{4} 10 $N_{\psi(2S)}/N_{J/W} = (3.4 \pm 0.1)*10^{-2}$ $N_{\psi(2S)}/N_{J/\psi} = (1.7 \pm 0.2)*10^{-2}$ 10 10^{2} 10^{2} 10 → data fit total - fit total Crystall-Ball (J/ψ) --- Crystall-Ball (J/w) --- Crystall-Ball (w(2S)) --- Crystall-Ball (w(2S)) 10 L 2 2.5 3 3.5 Λ 4.5 1.5 2.5 3.5 4.5 m_{supcl pair} [GeV/c²] m_{supcl pair} [GeV/c²]

- Simulation studies done with realistic expectations of quarkonia yields
- ψ(2S)/J/ψ ratio expected to be measured with about 3% and 12% statistical uncertainty in p-Pb (low-W) and Pb-p (high-W), respectively