Spin polarization at pA system, new spin polarization effects and late time attractors

Shi Pu University of Science and Technology of China

Workshop on Advances, Innovations, and Prospects in High-Energy Nuclear Physics 2024,

中法建交60周年-中国ALICE国际合作30周年系列活动

2024.10.23

Outline

- **Introduction to spin polarization**
- **Spin polarization at pA system Also see talk by Cong Yi in the same section.**
- **New spin polarization effects**
- **Late time attractors in spin hydrodynamics**
- **Summary**

Introduction to spin polarization

Spin in high energy physics

Striking spin effects have been observed in high energy reactions since 1970s

Slides copy from Prof. Zuo-tang Liang's review talk

Barnet and Einstein-de Hass effects

Barnett effect:

Rotation ⟹ **Magnetization** *Barnett, Magnetization by rotation, Phys Rev. (1915) 6:239–70.*

Einstein-de Haas effect:

Magnetization \Rightarrow **Rotation**

Einstein, de Haas, Experimental proof of the existence of Ampere's molecular currents. Verh Dtsch Phys Ges. (1915) 17:152.

Figures: copy from paper doi: 10.3389/fphy.2015.00054

OAM to spin polarization in HIC

- **Huge global orbital angular momenta** $(L \sim 10^5 h)$ are produced in HIC.
- **Global orbital angular momentum leads to the polarizations of Λ hyperons and spin alignment of vector mesons through spinorbital coupling.**

 Liang, Wang, PRL (2005); PLB (2005); Gao, Chen, Deng, Liang, Wang, Wang, PRC (2008)

reaction plane

Global polarization for Λ **and** Λ" **hyperons**

parity-violating decay of hyperons

In case of A's decay, daughter proton preferentially decays in the direction of Λ 's spin (opposite for anti- Λ)

$$
\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha \mathbf{P}_{\mathbf{\Lambda}} \cdot \mathbf{p}_{\mathbf{p}}^*)
$$

 α : Λ decay parameter (=0.642±0.013) p_p : proton momentum in Λ rest frame

(BR: 63.9%, c T ~7.9 cm)

Most vortical fluid

• **Estimation given by Becattini, Karpenko, Lisa, Upsal, Voloshin, PRC95, 054902 (2017)**

$$
\mathbf{P}_{\Lambda} \quad \simeq \quad \frac{\boldsymbol{\omega}}{2T} + \frac{\mu_{\Lambda} \mathbf{B}}{T} \n\mathbf{P}_{\overline{\Lambda}} \quad \simeq \quad \frac{\boldsymbol{\omega}}{2T} - \frac{\mu_{\Lambda} \mathbf{B}}{T}
$$

- **ω = (9 ± 1)x1021/s, greater than previously observed in any system.**
- **QGP is most vortical fluid so far.**

…

Liang, Wang, PRL (2005) Betz, Gyulassy, Torrieri, PRC (2007) Becattini, Piccinini, Rizzo, PRC (2008) Becattini, Karpenko, Lisa, Upsal, Voloshin, PRC (2017) Fang, Pang, Q. Wang, X. Wang, PRC (2016)

Phenomenological models for global polarization

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23

Polarization at low energies

Will the polarization of Lambda be nonzero when $\sqrt{s_{NN}} \rightarrow 0$ **? If** not, how large the "critical $\sqrt{s_{NN}}$ " will be?

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23 **10**

Local polarization

s quark scenarios (Thermal vorticity + shear) Fu, Liu, Pang, Song, Yin, PRL 2021

Yi, Pu, Yang, PRC (2021); Yi, Wu, Qin, Pu, PRC (2022) Ryu, Jupic, Shen, PRC (2021)

Isothermal equilibrium (Thermal vorticity + shear) Becattini, Buzzegoli, Palermo, Inghirami, Karpenko, PRL ²⁰²¹ Also see:

Puzzles in local polarization at AA system

Spin polarization at pA system

C. Yi, X.Y. Wu, J. Zhu, SP, G.Y. Qin, arXiv: 2408.04296

Also see talk by Cong Yi in the same section.

Setup (I)

• **We follow the modified Cooper-Frye formula to compute the polarization pseudo-vector including the contribution from thermal vorticity and thermal shear tensor.**

$$
\mathcal{S}^{\mu}(\mathbf{p}) = \mathcal{S}^{\mu}_{\text{thermal}}(\mathbf{p}) + \mathcal{S}^{\mu}_{\text{th-shear}}(\mathbf{p})
$$

$$
\mathcal{S}^{\mu}_{\text{thermal}}(\mathbf{p}) = \hbar \int d\Sigma \cdot \mathcal{N}_{p} \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \varpi_{\alpha\beta},
$$

$$
\mathcal{S}^{\mu}_{\text{th-shear}}(\mathbf{p}) = \hbar \int d\Sigma \cdot \mathcal{N}_{p} \frac{\epsilon^{\mu\nu\alpha\beta} p_{\nu} n_{\beta}}{(n \cdot p)} p^{\sigma} \xi_{\sigma\alpha}
$$

thermal vorticity

\n
$$
\varpi_{\alpha\beta} = \frac{1}{2} \left[\partial_{\alpha} \left(\frac{u_{\beta}}{T} \right) - \partial_{\beta} \left(\frac{u_{\alpha}}{T} \right) \right],
$$
\n**thermal shear tensor**

\n
$$
\xi_{\alpha\beta} = \frac{1}{2} \left[\partial_{\alpha} \left(\frac{u_{\beta}}{T} \right) + \partial_{\beta} \left(\frac{u_{\alpha}}{T} \right) \right]
$$

 \blacktriangleleft

Setup (II)

• **We consider three different scenarios:**

• Λ equilibrium:

It is assumed that Λ hyperons reach the local (thermal) equilibrium at the freeze-out hyper-surface.

• s **quark equilibrium:**

The spin of Λ hyperons is assumed to be carried by the constituent s quark. We take the s quark's mass instead of 's mass in the simulation.

• **Isothermal equilibrium:**

The temperature of the system at the freeze-out hyper-surface is assumed to be constant. The time unit vector is taken as fluid velocity for simplicity.

Setup (III)

- **We implement the 3+1D CLVisc hydrodynamics model Pang, Wang, Wang, PRC (2012) Wu, Qin, Pang, Wang, PRC (2022)**
- **Initial condition: TRENTo-3D model Soeder, Ke, Paquet, Bass, 2306.08665 Moreland, Bernhard, Bass, PRC (2015); PRC (2020) Ke, Moreland, Bernhard, Bass, PRC (2017)**
- **EoS: HotQCD**

HotQCD, A. Bazavov et al., Phys. Rev. D 90, 094503 (2014)

• **Temperature dependent shear and bulk viscosity**

J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, Phys. Rev. C 94, 024907 (2016)

• **p+Pb** collisions at $\sqrt{s_{NN}} = 8.16$ TeV

Fit parameters and test v2 of Λ

We have run 10⁵ minimum bias events to divide the centrality. The centrality-dependent pseudorapidity distributions of charged hadrons and elliptic flow for Λ hyperons computed by our model are consistent with the experimental measurements.

Multiplicity (centrality) dependence

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23 **18**

p_T dependence

Azimuthal angle and pseudo-rapidity dependence

Why?

- **We implement the 3+1D CLVisc hydrodynamics model Pang, Wang, Wang, PRC (2012) Wu, Qin, Pang, Wang, PRC (2022)**
- **Initial condition: TRENTo-3D model Soeder, Ke, Paquet, Bass, 2306.08665 Moreland, Bernhard, Bass, PRC (2015); PRC (2020) Ke, Moreland, Bernhard, Bass, PRC (2017)**
- **EoS: HotQCD**

HotQCD, A. Bazavov et al., Phys. Rev. D 90, 094503 (2014)

• **Temperature dependent shear and bulk viscosity**

J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, Phys. Rev. C 94, 024907 (2016)

• **p+Pb** collisions at $\sqrt{s_{NN}} = 8.16$ TeV

Test for AMPT initial condtions

It describes data well in s quark and isothermal equilbirum scenarios?

Test for AMPT initial conditions

We fix the parameters in 3+1D CLVisc hydrodynamic model with AMPT initial conditions by the spectrum of charged hadrons. But, it cannot describe v2 well.

However …

Smaller v2 gives a larger polarization along beam direction ? Smaller v2, larger shear induced polarization, smaller thermal vorticial induced polarization Sensitive to initial conditions?

Connection between P_z **and** $v₂$

• **Assuming we consider a Bjorken-like flow**

$$
\mathcal{S}^z_{\text{thermal}} = -\frac{1}{4m_\Lambda N} \frac{1}{T} \left. \frac{dT}{d\tau} \right|_{\Sigma} \partial_{\phi} \int d\Sigma_{\alpha} p^{\alpha} f_V^{(0)} \cosh \eta
$$

since

$$
\int d\Sigma_{\lambda} p^{\lambda} f_V^{(0)} = \frac{dN}{2\pi E_p p_T dp_T dY} \left[1 + \sum_{n=1}^{\infty} 2v_n(p_T, Y) \cos n\phi \right]
$$

one can get

$$
\mathcal{S}^z_\mathrm{thermal} \approx \frac{1}{m_\Lambda} \frac{1}{T} \left. \frac{dT}{d\tau} \right|_\Sigma v_2(p_T, 0) \sin 2\phi.
$$

Becattini, Karpenko, PRL (2018); C. Yi, SP, J.H. Gao, D.L. Yang, PRC (2022)

What is the relation between flow and polarization along beam direction?

New spin polarization effects

S. Fang, SP, arXiv:2408.09877

Spin Boltzmann equations

• **We derive the spin Boltzmann equation incorporating Møller scattering process using hard thermal loop approximations.**

$$
p^\mu \partial_\mu f^\text{\,<}_\text{A}(p) + \hbar \partial_\mu S^{(u),\mu\alpha}(p) \partial_\alpha f^\text{\,<}_\text{V}(p) \quad = \quad \mathcal{C}_\text{A} + \hbar \partial_\mu \left(S_{(u)}^{\mu\alpha} C_{\text{V},\alpha}[f^\text{\,<}_\text{V}]\right)
$$

S. Fang, SP, D.L. Yang, PRD (2022); S. Fang, SP, arXiv:2408.09877

• **Scenario (I): particle distribution function is off-equilibirum**

$$
\partial \sim \lambda^{-1} {\rm Kn} \ll \lambda^{-1}
$$

Kn: Knudsen number : **mean free path**

• **Scenario (II): particle distribution function is at local equilibrium** Similar to standard kinetic theory, e.g. AMY

New corrections from scattering

Let us start from the kinetic theory for massless fermions.

$$
p \cdot \partial f_0 = C_{pp' \to kk'}[\delta f],
$$

We consider the system close to the global equilibrium,

$$
f=f_0+\delta f,
$$

We can estimate

$$
\delta f \sim Ap_\mu p_\nu \pi^{\mu\nu}, \quad A \sim 1/C_{pp' \to kk'}[f] \sim 1/e^4,
$$

Recalling the spin current in phase space,

$$
j^{\mu}(p) = p^{\mu} f + S^{\mu\nu} \partial_{\nu} f + \int_{p',k,k'} C_{pp' \to kk'}[f] \Delta^{\mu},
$$

$$
j^{\mu} \sim \int_{p',k,k'} C_{pp' \to kk'}[\delta f] \Delta^{\mu} \sim \int_{p',k,k'} C_{pp' \to kk'}[A p_{\mu} p_{\nu} \pi^{\mu\nu}] \Delta^{\mu}
$$

- **Leading order in gradient expansion!**
- **Corrections from scatterings but do not depend on coupling constant**

It can also be derived by Kubo formula.

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23 **28**

Connection to condensed matter physics

- **After we finish this work, we find that the same discoveries have been derived in condensed matter physics in their quantum kinetic theory.**
	- **T. Valet, R. Raimondi, arXiv:2410.08975**

$$
\hat{\rho}_{nm}^{(1)}=-\hbar\frac{f_n^{(0)}-f_m^{(0)}}{\varepsilon_n-\varepsilon_m}e\boldsymbol{E}\cdot\hat{\mathcal{A}}_{nm}-\hbar\partial_{\boldsymbol{x}}\frac{f_n^{(1)}+f_m^{(1)}}{2}\cdot\hat{\mathcal{A}}_{nm}
$$

$$
-\frac{\mathrm{i}\hbar}{2(\varepsilon_n-\varepsilon_m)}\frac{2\pi n_i v_0^2}{\hbar}\sum_q \int \frac{d^d p}{(2\pi\hbar)^d} \hat{P}_n \hat{P}_q \hat{P}_m \times \cdots \quad (1)
$$

$$
\cdots \times \left[\delta\left(\varepsilon_q-\varepsilon_n\right)\left(\underline{f}_q^{(1)}-\underline{f}_n^{(1)}\right)+\delta\left(\varepsilon_q-\varepsilon_m\right)\left(\underline{f}_q^{(1)}-\underline{f}_m^{(1)}\right)\right],
$$

Replacing the electric force by shear force, the results are consistent with what we found.

Private communication and check with T. Valet in workshop at Hangzhou.

Physical meaning of new effects

New corrections to shear induced polarization

• **Scenario (I):**

$$
\delta \mathcal{P}^{\mu}_{(\text{I})}(\mathbf{p}) = \delta \mathcal{P}^{\mu}_{(\text{I}),\text{shear}} + \delta \mathcal{P}^{\mu}_{(\text{I}),\text{chem}} + \mathcal{O}(\hbar^2 \partial^2)
$$

$$
\delta \mathcal{P}^{\mu}_{(\text{I}),\text{shear}} = -\frac{\hbar^2}{4N} \int_{\Sigma} \frac{d\Sigma \cdot p}{E_{\mathbf{p}}} \beta_0 g_2(E_{\mathbf{p}}) \epsilon^{\mu \nu \rho \sigma} p_{\rho} u_{\sigma} \sigma_{\nu \alpha} p^{\alpha},
$$

$$
\delta \mathcal{P}^{\mu}_{(\text{I}),\text{chem}} = -\frac{\hbar^2}{4N} \int_{\Sigma} \frac{d\Sigma \cdot p}{E_{\mathbf{p}}} \beta_0 g_1(E_{\mathbf{p}}) \epsilon^{\mu \nu \rho \sigma} p_{\rho} u_{\sigma} \nabla_{\nu} \alpha_0.
$$

They come from scatterings but do not depend on coupling constant explicitly. They correspond to anomalous spin Hall conductivity in condensed matter.

S. Fang, SP, arXiv:2408.09877

Also see the similar findings: S. Lin and Z. Wang, arXiv:2406.10003.

Furthermore

What can we learn?

- **Spin current (in phase space) is quite different with the charge current.**
- **What is the complete leading order in gradient expansion in general for spin current? Are there other similar effects?**

What is next?

- **What is the underlying physics?**
- **How large will the correction be? How to measure it?**
- **Dissipative or non-dissipative? Topological invariant?**

Other second order corrections

• **Scenario (II):**

$$
\delta \mathcal{P}^{\mu}_{(II)}(\mathbf{p}) = \mathcal{P}^{\mu}_{(II),\omega-\nabla T} + \mathcal{P}^{\mu}_{(II),\nabla\omega} + \mathcal{P}^{\mu}_{(II),\omega-\text{chem}} + \mathcal{P}^{\mu}_{(II),\omega-\text{shear}} \n+ \mathcal{P}^{\mu}_{(II),\text{chem}-\nabla T} + \mathcal{P}^{\mu}_{(II),\text{shear}-\nabla T} + \mathcal{P}^{\mu}_{(II),\text{shear}-\text{chem}} + \mathcal{O}(\hbar^2 \partial^3) \n\mathcal{P}^{\mu}_{(II),\omega-\nabla T} = -\hbar^2 \int_{\Sigma} d\Sigma \cdot p a_{(II)}^{\mu} \left[d_2 \left(E_{\mathbf{p}} - d_1 \frac{1}{\beta_0} \right) \omega^{\alpha} \nabla_{\alpha} \beta_0 - d_6 \beta_0 p_{(\alpha} p_{\rho)} \omega^{\alpha} \nabla^{\rho} \beta_0 \right], \n\mathcal{P}^{\mu}_{(II),\nabla\omega} = \hbar^2 \int_{\Sigma} d\Sigma \cdot p a_{(II)}^{\mu} \left[\left(E_{\mathbf{p}} - d_1 \frac{1}{\beta_0} \right) d_2 \beta_0 \nabla^{\alpha} \omega_{\alpha} + d_6 \frac{1}{2} \beta_0^2 \nabla^{\alpha} \omega^{\rho} p_{(\alpha} p_{\rho)} \right], \n\mathcal{P}^{\mu}_{(II),\omega-\text{chem}} = \hbar^2 \int_{\Sigma} d\Sigma \cdot p a_{(II)}^{\mu} \left[\left(E_{\mathbf{p}} - d_1 \frac{1}{\beta_0} \right) d_3 \beta_0 \omega^{\alpha} \nabla_{\alpha} \alpha_0 - d_8 \beta_0^2 \omega^{\alpha} \nabla^{\rho} \alpha_0 p_{(\alpha} p_{\rho)} \right], \n\mathcal{P}^{\mu}_{(II),\omega-\text{shear}} = -\hbar^2 \beta_0 \int_{\Sigma} d\Sigma \cdot p a_{(II)}^{\mu} \left[-d_4 \omega^{\rho} \sigma^{\alpha}_{\rho} p_{(\alpha)} + d_9 \beta_0^2 \omega^{\beta} \sigma^{\alpha \lambda} p_{(\beta} p_{\alpha
$$

Self energy correction to Wigner function

$$
\left[\frac{i\hbar}{2}\gamma^{\mu}\nabla_{\mu}+\gamma^{\mu}\Pi_{\mu}-m+\overline{\Sigma}_{g}\star\right]S^{<}(q,X) = -\frac{i\hbar}{2}(\Sigma_{g}^{>}\star S^{<}-\Sigma_{g}^{<}\star S^{>}),
$$

$$
S^{<}\left(-\frac{i\hbar}{2}\gamma^{\mu}\overleftarrow{\nabla}_{\mu}+\gamma^{\mu}\overleftarrow{\Pi}_{\mu}-m\right)+S^{<}\star\overline{\Sigma}_{g} = -\frac{i\hbar}{2}(S^{>}\star\Sigma_{g}^{<}-S^{<}\star\Sigma_{g}^{>}),
$$

$$
\star
$$
 denotes the Moyal product

 $\overline{\Sigma}_{g}(q, X) = \Sigma^{\delta}(X) + \text{Re}\Sigma_{g}^{r}$ #**: Wigner function**

For a long time, we always neglect the self-energy terms for simplicity. Now, we consider the contributions from them carefully.

New corrections from self-energies

polarization

induced by:

• **We consider effects from the thermal QCD background. After a heavy calculation, we get the corrections to polarization vectors from selfenergies: Corrections to**

$$
\delta \mathcal{P}_{\text{therm}}^{\mu}(t, \mathbf{q}) = -\frac{\hbar^2}{2mN} \int_{\Sigma} q \cdot d\sigma G_{\text{T}}(E_q, \mathbf{q}) \frac{m_f^2 T}{E_q^3} \epsilon^{\mu\nu\alpha\beta} q_{\nu} \partial_{\alpha} \left(\frac{u_{\beta}}{T}\right),
$$
\n
$$
\delta \mathcal{P}_{\text{shear}}^{\mu}(t, \mathbf{q}) = -\frac{\hbar^2}{4mN} \int_{\Sigma} q \cdot d\sigma G_{\omega_1}(E_q, \mathbf{q}) \frac{m_f^2}{E_q^3} \frac{\epsilon^{\mu\nu\rho\sigma} q_{\rho} u_{\sigma}}{E_q} q^{\gamma} \sigma_{\nu\gamma},
$$
\n**Shear tensor**\n
$$
\delta \mathcal{P}_{\text{chem}}^{\mu}(t, \mathbf{q}) = -\frac{\hbar^2}{4mN} \int_{\Sigma} q \cdot d\sigma G_{\text{T}}(E_q, \mathbf{q}) \frac{C_{\text{F}} g^2 \mu T}{4\pi^2 E_q^2} \frac{\epsilon^{\mu\nu\rho\sigma} q_{\rho} u_{\sigma}}{E_q} \nabla_{\nu} \left(\frac{\mu}{T}\right)
$$
\n**Shear tensor**\n
$$
\delta \mathcal{P}_{\text{acc}}^{\mu}(t, \mathbf{q}) = \frac{\hbar^2}{4mN} \int_{\Sigma} q \cdot d\sigma G_{\text{T}}(E_q, \mathbf{q}) \frac{3m_f^2}{E_q^3} \epsilon^{\mu\nu\rho\sigma} q_{\rho} u_{\sigma} D u_{\nu},
$$
\n**Fluid acceleration**\n
$$
\delta \mathcal{P}_{\text{vor}}^{\mu}(t, \mathbf{q}) = \frac{\hbar^2}{4mN} \int_{\Sigma} q \cdot d\sigma \frac{m_f^2}{E_q^2} \left[\omega^{\mu} \left(4G_{\text{T}}(E_q, \mathbf{q}) - \frac{|q_{\perp}|^2}{E_q^2} G_{\omega_1}(E_q, \mathbf{q}) + 2G_{\omega_2}(E_q, \mathbf{q}) \right) \right. \qquad \left. \left. \right.
$$
\n**Kinetic vorticity**

Shuo Fang, Shi Pu, Di-Lun Yang, PRD (2024), arXiv: 2311.15197

Corrections from space-time dependent EM fields

• **We derived the corrections to Wigner function and polarization from varying EM fields.**

$$
\mathcal{S}^{\mu}_{(2)}\;=\;\frac{1}{8mN}\sum_{m=1,2,3}\int d\Sigma^{\sigma}p_{\sigma}X^{\mu}_{(m)}f^{(m)}_{5},\\ {}_{X^{\mu}_{(1)}\;=\;\frac{1}{p_{u}^{2}}\left(u^{\mu}u^{\nu}u_{\lambda}-\frac{1}{p_{u}}p^{\mu}u^{\nu}u_{\lambda}-\frac{2}{p_{u}}u^{\mu}u^{\nu}p_{\lambda}-\frac{1}{2p_{u}^{2}}u^{\mu}p^{\nu}p_{\lambda}+\frac{1}{p_{u}^{2}}p^{\mu}u^{\nu}p_{\lambda}+u_{\lambda}g^{\mu\nu}\right)F_{\nu\rho}F^{\lambda\rho},\\ {}_{X^{\mu}_{(1)}\;=\;\frac{1}{p_{u}^{2}}\left(\frac{1}{2}p^{\mu}u^{\nu}u_{\lambda}+u^{\mu}u^{\nu}p_{\lambda}-\frac{1}{4p_{u}}u^{\mu}p^{\nu}p_{\lambda}-\frac{1}{2p_{u}}p^{\mu}u^{\nu}p_{\lambda}-p_{u}g^{\mu\nu}u_{\lambda}\right)(F_{\nu\gamma}\Omega^{\lambda\gamma}+\Omega_{\nu\gamma}F^{\lambda\gamma})} \\ \quad+\frac{\beta}{p_{u}^{3}}\left(p^{\mu}u^{\nu}u_{\lambda}+2u^{\mu}u^{\nu}p_{\lambda}-\frac{1}{p_{u}}u^{\mu}p_{\mu}p_{\lambda}-\frac{2}{p_{u}}p^{\mu}u^{\nu}p_{\lambda}+\frac{1}{2p_{u}^{2}}p^{\mu}p^{\nu}p_{\lambda}-2p_{u}g^{\mu\nu}u_{\lambda}+g^{\mu\nu}p_{\lambda}\right)F_{\nu\rho}F^{\lambda\rho}}\;.
$$

Corrections for 2nd order constant EM fields

$$
X^{\mu}_{(2)} = \frac{1}{p_u} \left(\frac{1}{2} u^{\mu} p^{\nu} p_{\lambda} + p^{\mu} u^{\nu} p_{\lambda} - p_u g^{\mu \nu} p_{\lambda} \right) \Omega_{\nu \rho} \Omega^{\lambda \rho} + \frac{\beta}{p_u^2} \left(p^{\mu} u^{\nu} p_{\lambda} + \frac{1}{2} u^{\mu} p^{\nu} p_{\lambda} - \frac{1}{4 p_u} p^{\mu} p^{\nu} p_{\lambda} - p_u g^{\mu \nu} p_{\lambda} \right) (F_{\nu \gamma} \Omega^{\lambda \gamma} + \Omega_{\nu \gamma} F^{\lambda \gamma}) + \frac{\beta^2}{2 p_u^3} \left(u^{\mu} p_{\mu} p_{\lambda} + 2 p^{\mu} u^{\nu} p_{\lambda} - \frac{1}{p_u} p^{\mu} p_{\mu} p_{\lambda} - 2 p_u g^{\mu \nu} p_{\lambda} \right) F_{\nu \rho} F^{\lambda \rho}, X^{\mu}_{(3)} = \frac{\beta}{2 p_u} p^{\mu} p^{\nu} p_{\lambda} \Omega_{\nu \rho} \Omega^{\lambda \rho} + \frac{\beta^2}{4 p_u^2} p^{\mu} p^{\nu} p_{\lambda} (F_{\nu \gamma} \Omega^{\lambda \gamma} + \Omega_{\nu \gamma} F^{\lambda \gamma}) + \frac{\beta^3}{3 p_u^3} p^{\mu} p^{\nu} p_{\lambda} F_{\nu \rho} F^{\lambda \rho}.
$$

$$
\mathcal{S}^\mu_{\partial,\text{EM}} = \frac{1}{8mN} \sum_{m=0,1,2,3} \int d\Sigma^\sigma p_\sigma Y_{(m)}^\mu f_5^{(m)}, \; \text{Corrections for varying EM fields}
$$

$$
Y_{(0)}^{\mu} = -\frac{2}{3p_u^2} \left(u_{\lambda} u_{\nu} - \frac{1}{2p_u} u_{\lambda} p_{\nu} - \frac{1}{2p_u} p_{\lambda} u_{\nu} \right) \partial^{\lambda} F^{\mu\nu}
$$

+
$$
\frac{1}{3p_u^2} \left(2u^{\mu} u^{\nu} - \frac{1}{p_u} p^{\mu} u^{\nu} - \frac{1}{p_u} u^{\mu} p^{\nu} \right) \partial^{\lambda} F_{\lambda\nu},
$$

$$
Y_{(1)}^{\mu} = +\frac{2\beta}{3p_u} \left(u_{\lambda} u_{\nu} - \frac{1}{p_u} u_{\lambda} p_{\nu} - \frac{1}{p_u} p_{\lambda} u_{\nu} + \frac{1}{2p_u^2} p_{\lambda} p_{\nu} \right) \partial^{\lambda} F^{\mu\nu}
$$

+
$$
\frac{\beta}{6p_u} \left(u^{\mu} u^{\nu} + \frac{4}{p_u} p^{\mu} u^{\nu} + \frac{4}{p_u} u^{\mu} p^{\nu} - \frac{2}{p_u^2} p^{\mu} p^{\nu} \right) \partial^{\lambda} F_{\lambda\nu}
$$

-
$$
\frac{\beta}{3p_u^2} \left(u^{\mu} u^{\lambda} p^{\nu} - \frac{1}{2p_u} p^{\mu} u^{\lambda} p^{\nu} - \frac{1}{2p_u} u^{\mu} p^{\lambda} p^{\nu} \right) u^{\rho} \partial_{\lambda} F_{\nu\rho}
$$

$$
\frac{4\beta}{3p_u} \partial_{\lambda} F^{\mu\lambda} + \frac{\beta}{3p_u} u^{\nu} u^{\rho} \partial^{\mu} F_{\nu\rho},
$$

$$
Y_{(2)}^{\mu} = -\frac{\beta^2}{3} \left(u_{\lambda} u_{\nu} - \frac{2}{p_u} u_{\lambda} p_{\nu} + \frac{1}{p_u^2} p_{\lambda} p_{\nu} \right) \partial^{\lambda} F^{\mu \nu}
$$

+ $\frac{\beta^2}{6} \left(\frac{1}{p_u^2} p^{\mu} u^{\nu} + \frac{2}{p_u^2} p^{\mu} p^{\nu} \right) \partial^{\lambda} F_{\lambda \nu} + \frac{\beta^2}{3p_u} p^{\nu} u^{\rho} \partial^{\mu} F_{\nu \rho}$
+ $\frac{\beta^2}{3p_u} \left(u^{\mu} u^{\lambda} p^{\nu} - \frac{1}{p_u} p^{\mu} u^{\lambda} p^{\nu} - \frac{1}{p_u} u^{\mu} p^{\lambda} p^{\nu} + \frac{1}{2p_u^2} p^{\mu} p^{\lambda} p^{\nu} \right) u^{\rho} \partial_{\lambda} F_{\nu \rho},$

$$
Y_{(3)}^{\mu} = \frac{\beta^3}{3p_u} \left(p^{\mu} u^{\lambda} p^{\nu} - \frac{1}{2p_u} p^{\mu} p^{\lambda} p^{\nu} \right) u^{\rho} \partial_{\lambda} F_{\nu \rho}.
$$

S. Z. Yang, J.H. Gao, SP, arXiv: 2409.00456

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23 **36**

Attractors and focusing behavior in spin hydrodynamics

D.L. Wang, Y. Li, SP, arXiv: 2408.03781

Basic conservation equations in canonical form

• **Total angular momentum conservation**

$$
\partial_{\alpha} J_{\text{can}}^{\alpha\mu\nu} = 0 \qquad J^{\lambda\mu\nu} = x^{\mu} \Theta^{\lambda\nu} - x^{\nu} \Theta^{\lambda\mu} + \Sigma^{\lambda\mu\nu},
$$
\n
$$
\partial_{\lambda} \Sigma^{\lambda\mu\nu} = -2\Theta^{[\mu\nu]},
$$
\nFor every moment, we consider

• **Energy-momentum conservation**

$$
\partial_\mu \Theta^{\mu\nu} = 0,
$$

• **Currents conservation**

$$
\partial_\mu j^\mu = 0,
$$

Spin tensor, spin density and chemical potential

Thermodynamic relations

$$
e + p = Ts + \mu n + \omega_{\mu\nu} S^{\mu\nu}
$$

energy density **pressure temperature X entropy density**

spin chemical potential spin density

6-d.o.f Spin hydrodynamics

• **By using entropy principle, one can get**

$$
\Theta^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu} + 2h^{(\mu}u^{\nu)} + 2q^{[\mu}u^{\nu]} + \pi^{\mu\nu} + \phi^{\mu\nu}
$$

\n
$$
q^{\mu} = \lambda[(u \cdot \partial)u^{\mu} + \frac{1}{T}\Delta^{\mu\nu}\partial_{\nu}T - 4\omega^{\mu\nu}u_{\nu}],
$$

\n
$$
\phi^{\mu\nu} = 2\gamma[T\omega_{th}^{\mu\nu} + 2(g^{\mu\alpha} - u^{\mu}u^{\alpha})(g^{\nu\beta} - u^{\nu}u^{\beta})\omega_{\alpha\beta}]/T.
$$

Spin hydrodynamics:

Florkowski, Friman, Jaiswal, Ryblewski, Speranza (2017-2018);

Montenegro, Tinti, Torrieri (2017-2019);

Hattori, Hongo, Huang, Matsuo, Taya PLB(2019) ; arXiv: 2201.12390; arXiv: 2205.08051 Fukushima, SP, Lecture Note (2020); PLB(2021); Wang, Fang, SP, PRD(2021); Wang, Xie, Fang, SP, PRD (2022)

S.Y. Li, M.A Stephanov, H.U Yee, arXiv:2011.12318

D. She, A. Huang, D.F. Hou, J.F Liao, arXiv: 2105.04060Weickgenannt, Wanger, Speranze, Rischke, PRD 2022; PRD 2022; Weickgennatt, Wanger, Speranza, PRD 2022; arXiv:2306.05936

Recent review:

SP, X.G. Huang, "Relativistic spin hydrodynamics", Acta Phys.Sin. 72 (2023) 7, 071202
Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23

Analytic solutions for spin hydrodynamics

• **Solution for Bjorken type spin hydrodynamics:**

$$
\omega^{xy}(\tau) = \omega_0^{xy} \left(\frac{\tau_0}{\tau}\right)^{1/3} \exp\left[-\frac{2\gamma\tau_0}{a_1 T_0^3} \left(\frac{\tau^2}{\tau_0^2} - 1\right)\right] \left\{ 1 + \left(\frac{2\eta_s}{3\ s} + \frac{\zeta}{s}\right) \frac{1}{T_0^4} \right\} \times \left[\frac{T_0^3}{\tau_0} \left(\left(\frac{\tau_0}{\tau}\right)^{2/3} - 1\right) + \frac{\gamma}{a_1} \left(3\left(\frac{\tau}{\tau_0}\right)^2 - \frac{9}{2}\left(\frac{\tau}{\tau_0}\right)^{4/3} + \frac{3}{2}\right)\right] \right\} \n+ \mathcal{O}\left((\omega_0^{xy}/T_0)^2, (\eta_s/s)^2, (\zeta/s)^2, (\eta_s\zeta/s^2)\right),
$$

D.L. Wang, S. Fang, SP, Phys.Rev.D 104 (2021) 11, 114043

• **Solution for Gubser type spin hydrodynamics:**

$$
S^{0x} = \frac{4L^2}{\tau} C_+ G(L, \tau, x_\perp)^{-1}, \qquad S^{xz} = \frac{4L^2}{\tau} D_+ G(L, \tau, x_\perp)^{-1},
$$

$$
S^{0y} = \frac{4L^2}{\tau} C_- G(L, \tau, x_\perp)^{-1}, \qquad S^{yz} = \frac{4L^2}{\tau} D_- G(L, \tau, x_\perp)^{-1}.
$$

D.L. Wang, X.Q. Xie, S.Fang, SP, Phys.Rev.D 105 (2022) 11, 114050

• **Spin density: Power law X exponential decay Ordinary hydro variables: power law decay No spin effects at late time?**

Revisited Bjorken type spin hydro (I)

• **For Bjorken type spin hydro, we have**

$$
\frac{d^2S^{xy}}{dw^2} + (\Delta_1^{-1} + w^{-1})\frac{dS^{xy}}{dw} + \Delta_1^{-2}(w^{-1} - w^{-2} + 8\alpha w^{\Delta_2})S^{xy} = 0.
$$

$$
Kn^{-1} \approx w \equiv \frac{\tau}{\tau_{\phi}}.\qquad w \equiv \frac{\tau}{\tau_{\phi}} = \left(\frac{\tau}{\tau_1}\right)^{\Delta_1}, \ \frac{\tau_{\phi}\gamma}{\chi} = \alpha w^{\Delta_2},
$$

Δ_1 , Δ_2 are constant

 γ : transport coefficient τ_{ϕ} : relaxation time χ : spin susceptibility

$$
f(w) \equiv \Delta_1 \frac{w}{S^{xy}} \frac{dS^{xy}}{dw} = \frac{\tau}{S^{xy}} \frac{dS^{xy}}{d\tau}
$$

Here, we assume the γ is proper time dependent different with our previous work.

$$
\Delta_1 w f' + f^2 + w f + w - 1 + 8\alpha w^{2+\Delta_2} = 0,
$$

Revisited Bjorken type spin hydro (II)

$$
\Delta_1 w f' + f^2 + w f + w - 1 + 8\alpha w^{2+\Delta_2} = 0,
$$

$$
w \equiv \frac{\tau}{\tau_{\phi}} = \left(\frac{\tau}{\tau_1}\right)^{\Delta_1}, \ \frac{\tau_{\phi}\gamma}{\chi} = \alpha w^{\Delta_2}, \qquad f(w) \equiv \Delta_1 \frac{w}{S^{xy}} \frac{dS^{xy}}{dw} = \frac{\tau}{S^{xy}} \frac{dS^{xy}}{d\tau}
$$

If $\alpha w^{2+\Delta_2} \to 0$, then the late time beahivor reads

 $f \sim \pm 1$

$$
\Delta y \omega f' + f^2 + y \omega f + y \omega' - 1 + 8 \omega x^2 + \Delta^2 = 0,
$$

Trivial solution? But one kind of attactors!

Spin density: power law decay

Asymptotic solutions for $S = S^{xy}$

Late time attactors

Why late time attactors exist?

• **Assuming spin susceptibility is a constant for simplicity.** $\gamma \sim \tau^{1+\Delta_2-1/\Delta_1}$

When γ is small (or $\Delta_1 > 0$, $\Delta_2 \leq -1$),

$$
\tau_{\phi} \Delta^{\mu \alpha} \Delta^{\nu \beta} u^{\rho} \nabla_{\rho} \phi_{\alpha \beta} + \phi^{\mu \nu} = 2 \gamma \Delta^{\mu \alpha} \Delta^{\nu \beta} (\nabla_{[\alpha} u_{\beta]} + 2 \omega_{\alpha \beta}),
$$

$$
\phi^{xy} \approx \phi_0 \exp \left(-\frac{w}{\Delta_1}\right) + \mathcal{O}(\gamma),
$$

While ϕ **is the source generating spin density**

$$
\partial_\lambda \Sigma^{\lambda xy} \approx 0
$$

$$
\frac{dS^{xy}}{d\tau} + \frac{1}{\tau}S^{xy} \approx 0, \qquad S^{xy} \approx S_0 \frac{\tau_1}{\tau} = S_0 w^{-1/\Delta_1}
$$

In this case, spin density decays due to expanding only, just like energy or number density in a Bjorken flow. Beyond the non-hydro modes?

New discovery: focusing behavior

FIG. 5. The focusing behavior for $S^{xy}(w)/S_0$ with different S'_0 . The parameters are set to be $\Delta_1 = 1, \Delta_2 = -1.5$, and $\alpha = 2$. The initial conditions are chosen as $w_0 = 1$ and $S'_0 = -4.9, -3.7,$ $-2.5, -1.3, -0.1, 1.1, 2.3, 3.5,$ and 4.7. All solutions $S^{xy}(w)/S_0$ pass through the same point at $w = 2.077, 3.876, 6.804,$ and 11.974 (the last two are not shown in this figure).

Summary and outlook

Summary (I)

How to understand the local polarization at pA system?

New corrections to shear induced polarization come from scatterings but do not depend on coupling constant explicitly.

Summary (III)

We derive the late time attractors and focusing behavior for spin hydrodynamics. It implies that spin density can be treated as other thermodynamic variables in certain region.

Thank you for your time!

Any comments and suggestions are welcome!

Spin polarization at pA system and new spin polarization effect, Shi Pu (USTC), China-ALICE 30 years, 2024.10.23 **52**

No singularity for spin density

Early time attractors

Are shear induced polarization or spin alignment non-dissipative?

Q1: If the coefficient is T-even, it is non-dissipative.

CME	$j \sim CB$	Taking T transformation	$j \rightarrow -j$	$C: \text{T-even}$
Spin	$S^i \sim C^{ijk}(\partial_j u_k + \partial_k u_j)$	$S^i \rightarrow -S^i$	$C: \text{T-even}$	
vector	$\partial_j u_k \rightarrow -\partial_j u_k$	Non-dissipative?		
Spin	$\epsilon^i(\lambda) \epsilon^{*j}(\lambda') \rho_{\lambda \lambda'} \sim a \pi^{ij}$	$\rho_{\lambda \lambda'} \rightarrow (-1)^{\lambda + \lambda'} \rho_{\lambda \lambda'}$		
alignment	$\epsilon^i(\lambda) \epsilon^{*j}(\lambda') \rho_{\lambda \lambda'} \sim a \pi^{ij}$	$\epsilon^{s*}_{\mu}(\mathbf{p}) \rightarrow -(-1)^s \tilde{\delta}^{\alpha}_{\mu} \epsilon^{-s*}_{\alpha}(-\mathbf{p})$		

For ρ_{00} , the coefficient "a" is T-odd. Dissipative?

In Zubarev approach, the non-dissipative means the results does NOT depend on hypersurface. But, shear tensor comes from local equilibrium operators and should always depends on hypersurface. So, shear induced something is always dissipative?