Probing collectivity with fluctuations of the pt spectrum

based on 2407.17313, with Tribhuban Parida & Rupam Samanta

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics, Wuhan, Oct. 20-23, 2024

Jean-Yves Ollitrault, IPhT Saclay

History: Hydrodynamics seen in Pb+Pb collisions

The observation of correlations which extend to large relative pseudorapidity $\Delta\eta$ (long-range correlations), almost independent of $\Delta\eta$, has been instrumental in establishing the formation of a little fluid, first at RHIC, than at LHC

Number of particle pairs versus $\Delta \phi$ and $\Delta \eta$ CMS 1201.3158

The origin of long-range correlations

Long-range correlations originate from the initial stages of the collision: strings or colour flux tubes are created, which span the whole rapidity range (or at least a large part of it).

This picture of strong interactions is as old, or older than, QCD itself

Artru Mennessier <u>Nucl. Phys. B 70 (1974) 93-115</u>

Gelís <u>1110.1544</u>

In every event, the transverse density profile is independent of rapidity

Initial state + collectivity 0-5% 1 d²N^{pair} N_{trg}dΔηdΔφ 30. 3 29.5 29 -2 M

The fluid pattern (temperature, fluid velocity) is also independent of rapidity. Generates the familiar "ridge" structure.

Probing collectivity with long-range pair correlations (outline)

Until now

Azimuthal (ϕ) correlations.

Observables:

I. Integrated anisotropic flow, v_n Measures the shape of the fireball

3. Differential anisotropic flow $v_n(p_T)$, for identified particles when possible.

In this talk

 p_t correlations: ϕ not needed!

Observables:

2. Fluctuation of p_T per particle: σ_{PT} Measures the *temperature* of the fireball

4. Finally the differential $v_0(p_T)$, for identified particles when possible.

Schenke Shen Teaney 2004.00690

Measuring a long-range pair correlation

One uses two detectors, or two parts of a large detector,

- separated by a rapidity gap to suppress short-range nonflow correlations
- symmetric around mid-rapidity (simplest case, known as 2-subevent method)

Observables X and Y are measured in each event. Generally, the correlation is $\langle XY \rangle - \langle X \rangle \langle Y \rangle$, where $\langle \cdots \rangle$ is an average over many collision events in a centrality class.

1. Integrated anisotropic flow v_n

 $\langle X \rangle = \langle Y \rangle = 0$ if detectors A and B have isotropic acceptance (as a side note, the analysis works just as well if they don't)

I. Integrated anisotropic flow v_n

2. Fluctuation of p_T per particle: v_0

$$-\langle X \rangle \langle Y \rangle$$

None of these analyses implements a rapidity gap $\Delta \eta$! This is very wrong for small systems, p+Pb and p+p (not shown)

2. Fluctuation of p_T per particle: v_0

3. Differential anisotropic flow $v_n(p_T)$

In detector A, count only particles in the p_T bin. In B, take all particles.

$$v_n(p_T) \equiv \frac{\langle XY \rangle - \langle X \rangle \langle Y \rangle}{\langle N_A(p_T) \rangle v_n\{2\}}$$

ALICE 1805.04390

3. Differential elliptic flow $v_2(p_T)$

Mass ordering at low p_T , generic effect of hydro

Baryon-meson splitting at high p_T , not explained by hydro (hadronization through coalescence)

3. Differential triangular flow $v_3(p_T)$

ALICE 1805.04390

Mass ordering at low p_T , generic effect of hydro

Baryon-meson splitting at high p_T , not explained by hydro (hadronization through coalescence)

3. Scaled differential flow $v_n(p_T)/v_n$

Once scaled by the integrated flow, the result is centrality independent (here, the x axis is also rescaled)

This scaled flow is in my opinion a useful observable that other experiments should also provide

ATLAS 1808.03951

$X \equiv N_A(p_T)$

One then defines

 $v_0(p_T) \equiv$

 $\langle N_A(p_T) \rangle \sigma_{p_T}$ Same definition as $v_n(p_T)$, where one replaces v_n with σ_{p_T} .

4. New observable: Teaney's $v_0(p_T)$

$$Y \equiv \frac{1}{N_B} \sum_{k=1}^{N_B} p_{T,k}$$

$$\langle XY \rangle - \langle X \rangle \langle Y \rangle$$

Schenke Shen Teaney 2004.00690

per particle (i.e., temperature) in detector B.

The scaled $v_0(p_T)/v_0$, like $v_n(p_T)/v_n$, is essentially independent of centrality. We make predictions for $v_0(p_T)/v_0$, rather than $v_0(p_T)$ itself.

Physical interpretation of $v_0(p_T)$

- $v_0(p_T)$ is the relative change in the spectrum in detector A induced by a change of p_T
- $v_0(p_T)$ represents the relative change in the spectrum induced by a temperature fluctuation.

Hydrodynamic simulations

We carry out two sets of hydro calculations, both at b=0.

- I. Fluctuating initial conditions, where we solve the hydro for each initial condition, mimicking an actual experiment.
- 2. Smooth initial conditions, where we average over initial fluctuations before running the hydro, just once.

Both give comparable spectra, in rough agreement with data (pion excess at low p_t is a generic failure of hydro).

- I. With fluctuating IC, we evaluate $v_0(p_t)/v_0$ like in experiment
- 2. With smooth IC, we increase the initial temperature by ~1% and evaluate the relative change in the spectrum.
- 3. Note that the denominator $v_0^{h^{\pm}}$ is evaluated for all charged particles, not for the corresponding identified particles. It is a global normalization.

 $v_0(p_T)/v_0^{h^{\pm}}$

Predictions for $v_0(p_T)/v_0$

 $v_0(p_T)$ is a spectrum fluctuation. It must integrate to 0, hence changes sign: $v_0(p_T) \frac{dN}{dp_T} dp_T = 0$

Anisotropic flow $v_n(p_T)$ usually >0 $\int_{p_T} v_n(p_T) \frac{dN}{dp_T} dp_T = v_n N \text{ for } n \ge 2$

The corresponding sum rule for v_0 is $p_T v_0(p_T) \frac{dN}{dp_T} dp_T = \langle p_T \rangle v_0 N$ (sum over all particle species implied)

Sum rules

What you should look for in data

- I. Characteristic mass ordering, like $v_n(p_T)$, consequence of collective flow.
- 2. At larger p_T , where hydro fails, will there also be baryon/meson splitting, indicative of quark coalescence?
- 3. Are the same phenomena also seen in small systems?

p_T acceptance

The p_T range depends on the detector.

Differential observables, $v_0(p_T)$ and $v_n(p_T)$, are independent of acceptance.

 v_0 and v_n depend on integration range. Acceptance correction factor for v_0 :

$$C_A \equiv \frac{\int_{(p_T)_{\min}}^{(p_T)_{\max}} \left(p_T - \langle p_T \rangle \right) \frac{v_0(p_T)}{v_0} \frac{dN}{dp_T} dp_T}{\int_{(p_T)_{\min}}^{(p_T)_{\max}} p_T \frac{dN}{dp_T} dp_T}$$

ATLAS sees a strong dependence of σ_{p_T} on p_T cuts (notice the log scale!)

We use the largest value $0.5 < p_T < 5$ as input and infer the other values using the acceptance factor C_A calculated in hydro.

Calculation is in perfect agreement with data, which is a first hint that hydro is in the ballpark for $v_0(p_T)$.

Dependence of σ_{p_T} on p_T cuts

$v_0(p_t)$ is the true radial flow

- The physics of p_T fluctuations, v_0 , is similar to that of anisotropic flow, v_n
- differently, because few people understood (I didn't until recently) that p_T fluctuations are a signature of collectivity. But v_0 and v_n should be analyzed in the exact same way.
- while v_0 is sensitive to bulk only (not shown in this talk).
- at low p_T . What is $v_0(p_T)/v_0$ at high p_T , where we know that hydro fails?
- the order of magnitude of v_0 is known in p+Pb or p+p, as no rapidity gap has been implemented so far.

Experiments should measure $v_0(p_T)$ and it should be called radial flow by analogy. So far, the analyses of p_T fluctuations and v_n of at RHIC and LHC have been done

• In hydrodynamics, v_n is suppressed by both shear (η /s) and bulk (ς /s) viscosities,

• Hydro makes a robust prediction for $v_0(p_T)/v_0$, which depends little on transport coeff. and initial conditions, like $v_n(p_T)/v_n$. In particular, mass ordering is expected

• What about small systems? Are there still long-range p_T correlations? Not even