

Probing collectivity with fluctuations of the p_t spectrum

based on [2407.17313,](https://arxiv.org/abs/2407.17313) with Tribhuban Parida & Rupam Samanta

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics, Wuhan, Oct. 20-23, 2024

Jean-Yves Ollitrault, IPhT Saclay

History: Hydrodynamics seen in Pb+Pb collisions

The observation of correlations which extend to large relative pseudorapidity Δη (long-range correlations), almost independent of Δη, has been instrumental in establishing the formation of a little fluid, first at RHIC, than at LHC

Number of particle pairs versus $\Delta \varphi$ and $\Delta \eta$ **CMS [1201.3158](https://arxiv.org/pdf/1201.3158.pdf)**

The origin of long-range correlations

Long-range correlations originate from the initial stages of the collision: strings or colour flux tubes are created, which span the whole rapidity range (or at least a large part of it).

This picture of strong interactions is as old, or older than, QCD itself

Artru Mennessier [Nucl.Phys.B 70 \(1974\) 93-115](https://doi.org/10.1016/0550-3213(74)90360-5) Gelis [1110.1544](https://arxiv.org/pdf/1110.1544.pdf)

Initial state + collectivity $0 - 5\%$ TurndAnd 30. 3 29. 29 -2 \aleph

In every event, the transverse density profile is independent of rapidity

The fluid pattern (temperature, fluid velocity) is also independent of rapidity. Generates the familiar "ridge" structure.

Probing collectivity with long-range pair correlations (outline)

Until now

Azimuthal (φ) correlations.

Observables:

3. Differential anisotropic flow $v_n(p_T)$, for identified particles when possible.

1. Integrated anisotropic flow, vn Measures the *shape* of the fireball 2. Fluctuation of p_T per particle: σ_{pT} Measures the *temperature* of the fireball

In this talk

pt correlations: φ not needed!

Observables:

4. Finally the differential v0(pT), for identified particles when possible.

Schenke Shen Teaney [2004.00690](https://arxiv.org/pdf/2004.00690.pdf)

Measuring a long-range pair correlation

One uses two detectors, or two parts of a large detector,

- separated by a rapidity gap to suppress short-range nonflow correlations
- symmetric around mid-rapidity (simplest case, known as 2-subevent method)

Observables X and Y are measured in each event. Generally, the correlation is $\langle XY \rangle - \langle X \rangle \langle Y \rangle$, where $\langle \cdots \rangle$ is an average over many collision events in a centrality class.

-
-
-

 $\langle X \rangle = \langle Y \rangle = 0$ if detectors A and B have isotropic acceptance (as a side note, the analysis works *just as well* if they don't)

$$
\langle XY\rangle - \langle X\rangle \langle Y\rangle
$$

1. Integrated anisotropic flow v_n

1. Integrated anisotropic flow v_n

2. Fluctuation of p_T per particle: v_0

$$
-\langle X\rangle\langle Y\rangle
$$

None of these analyses implements a rapidity gap $\Delta \eta$! This is *very wrong* for small systems, p+Pb and p+p (not shown)

2. Fluctuation of p_T per particle: v_0

3. Differential anisotropic flow $v_n(p_T)$

In detector A, count only particles in the $p_T^{}$ bin. In B, take all particles.

$$
v_n(p_T) \equiv \frac{\langle XY \rangle - \langle X \rangle \langle Y \rangle}{\langle N_A(p_T) \rangle v_n \{2\}}
$$

Mass ordering at low p_T , generic effect of hydro

Baryon-meson splitting at high p_T , not explained by hydro (hadronization through coalescence)

ALICE [1805.04390](https://arxiv.org/pdf/1805.04390.pdf)

3. Differential elliptic flow $v_2(p_T)$

ALICE [1805.04390](https://arxiv.org/pdf/1805.04390.pdf)

Mass ordering at low p_T , generic effect of hydro

3. Differential triangular flow $v_3(p_T)$

Baryon-meson splitting at high p_T , not explained by hydro (hadronization through coalescence)

ATLAS [1808.03951](https://arxiv.org/pdf/arXiv-1808.03951.pdf)

Once scaled by the integrated flow, the result is centrality independent (here, the x axis is also rescaled)

This scaled flow is in my opinion a useful observable that other experiments should also provide

3. Scaled differential flow $v_n(p_T)/v_n$

$X \equiv N_A(p_T)$

One then defines

 $v_0(p_T) \equiv$

Same definition as $v_n(p_T)$, where one replaces v_n with σ_{p_T} . $\langle N_A(p_T) \rangle \sigma_{p_T}$

4. New observable: Teaney's $v_0(p_T)$

$$
Y \equiv \frac{1}{N_B} \sum_{k=1}^{N_B} p_{T,k}
$$

$$
\langle XY \rangle - \langle X \rangle \langle Y \rangle
$$

Schenke Shen Teaney [2004.00690](https://arxiv.org/pdf/2004.00690.pdf)

per particle (i.e., temperature) in detector B.

The scaled $v_0(p_T)/v_0$, like $v_n(p_T)/v_n$, is essentially independent of centrality. We make predictions for $v_0(p_T)/v_0$, rather than $v_0(p_T)$ itself.

Physical interpretation of $v_0(p_T)$

- $v_0(p_T)$ is the relative change in the spectrum in detector A induced by a change of $p_T^{}$
- $v_0(p_T)$ represents the relative change in the spectrum induced by a temperature fluctuation.
	-

Hydrodynamic simulations

We carry out two sets of hydro calculations, both at b=0.

- 1. Fluctuating initial conditions, where we solve the hydro for each initial condition, mimicking an actual experiment.
- 2. Smooth initial conditions, where we average over initial fluctuations before running the hydro, just once.

Both give comparable spectra, in rough agreement with data (pion excess at low p_t is a generic failure of hydro).

- 1. With fluctuating IC, we evaluate $v_0(p_t)/v_0$ like in experiment
- 2. With smooth IC, we increase the initial temperature by ~1% and evaluate the relative change in the spectrum.
- 3. Note that the denominator $v_0^{h^{\pm}}$ is evaluated for all charged particles, not for the corresponding identified particles. It is a global normalization. 0

Predictions for $v_0(p_T)/v_0$

 $v_0(p_T)$ is a spectrum fluctuation. It must integrate to 0, hence changes sign: \int_{p_T} $v_0(p_T)$ *dN dpT* $dp_T=0$

Anisotropic flow $v_n(p_T)$ usually >0 for $v_n(p_T)$ \int_{p_T} $v_n(p_T)$ *dN dpT* $dp_T = v_n N$ for $n \geq 2$

The corresponding sum rule for v_0 is (sum over all particle species implied) $J p_T$ $p_Tv_0(p_T)$ *dN dpT* $dp_T = \langle p_T \rangle v_0 N$

Sum rules

What you should look for in data

- 1. Characteristic mass ordering, like $v_n(p_T)$, consequence of collective flow.
- 2. At larger p_T , where hydro fails, will there also be baryon/meson splitting, indicative of quark coalescence?
- 3. Are the same phenomena also seen in small systems?

p_T acceptance

The p_T range depends on the detector.

Differential observables, $v_0(p_T)$ and $v_n(p_T)$, are independent of acceptance.

 v_0 and v_n depend on integration range. Acceptance correction factor for v_0 :

$$
C_A \equiv \frac{\int_{(p_T)_{\text{min}}}^{(p_T)_{\text{max}}} (p_T - \langle p_T \rangle) \frac{v_0(p_T)}{v_0} \frac{dN}{dp_T} dp_T}{\int_{(p_T)_{\text{min}}}^{(p_T)_{\text{max}}} p_T \frac{dN}{dp_T} dp_T}
$$

ATLAS sees a strong dependence of σ_{p_T} on p_T cuts (notice the log scale!)

We use the largest value $0.5 < p_T < 5$ as input and infer the other values using the acceptance factor C_A calculated in hydro.

Calculation is in perfect agreement with data, which is a first hint that hydro is in the ballpark for $v_0(p_T)$.

Dependence of σ_{p_T} on p_T cuts

$v_0(p_t)$ is the true radial flow

- The physics of p_T fluctuations, v_0 , is similar to that of anisotropic flow, v_n
-
- differently, because few people understood (I didn't until recently) that $p_{\overline{T}}$ fluctuations are a signature of collectivity. But v_0 and v_n should be analyzed in the exact same way.
- while v_0 is sensitive to bulk only (not shown in this talk).
- at low p_T What is $v_0(p_T)/v_0$ at high p_T , where we know that hydro fails?
- the order of magnitude of v_0 is known in p+Pb or p+p, as no rapidity gap has been implemented so far.

• Experiments should measure $v_0(p_T^{})$ and it should be called radial flow by analogy. • So far, the analyses of p_T fluctuations and v_n of $\,$ at RHIC and LHC have been done $\,$

• In hydrodynamics, v_n is suppressed by both shear (η/s) and bulk (ς /s) viscosities,

• Hydro makes a robust prediction for $v_0(p_T) / v_0$, which depends little on transport coeff. and initial conditions, like $v_n(p_T)/v_n$. In particular, mass ordering is expected

• What about small systems? Are there still long-range p_{T} correlations? Not even $\,$