Electroweak boson production with ALICE

Diego Stocco

for the ALICE Collaboration

Workshop on Advances, Innovations and Future Perspectives in High-Energy Nuclear Physics 19-24 October 2024 Wuhan, China

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Motivation

- W[±] and Z⁰ are heavy electroweak bosons
 - theoretically well known

- Ideal probes to constrain (nuclear) parton distribution functions (PDFs)
 - access to large Q^2 and wide Bjorken-x range
 - leptonic decay not affected by strongly-interacting medium
 - mainly produced via: $u\bar{d} \rightarrow W^+$, $\bar{u}d \rightarrow W^-$, $q\bar{q} \rightarrow Z^0 =>$ sensitive to the flavour dependence

Reference for hadron production

 Non-trivial scaling of the intermediate/high-p_T charged-particle multiplicity vs INEL>0 observed

- W[±] and Z⁰ bosons are electroweak probes =>
 - different sensitivity to underlying QCD mechanism compared to hadronic probes
 - unique insight

EW boson measurements

 For p-Pb collisions: different per-nucleon energy between p and Pb => CM boosted along proton direction (of 0.465 units)

Collision system	Energy	Luminosity	Rapidity	Publication
рр	13 TeV	~6.6 pb ⁻¹	<i>y</i> < 0.6	
p-Pb	5.02 TeV	5.03 ± 0.18 nb ⁻¹ 5.8 ± 0.2 nb ⁻¹	2.03 < y _{CMS} < 3.53 -4.46 < y _{CMS} < -2.96	<u>JHEP 02 (2017) 077</u>
p-Pb	8.16 TeV	6.73 ± 0.16 nb ⁻¹ 10.0 ± 0.2 nb ⁻¹	2.03 < y _{CMS} < 3.53 -4.46 < y _{CMS} < -2.96	W ^{±:} <u>JHEP 05 (2022) 036</u> Z ⁰ : <u>JHEP 09 (2020) 076</u>
Pb-Pb	5.02 TeV	663 ± 15 μb ⁻¹	2.5 < <i>y</i> < 4	W ^{±:} <u>JHEP 05 (2022) 036</u> Z ⁰ : <u>JHEP 09 (2020) 076</u>

Analysis strategy: Z⁰

- Invariant mass of the lepton pairs
- PID and kinematic cuts on leptons
 - Isolation criteria for electrons
- Background estimated with like-sign pairs and subtracted

Analysis strategy: W[±]

- Isolation cuts on energy
- Data-driven estimation and subtraction of the e←c,b contribution

- MC template fit of single-muon $\ensuremath{p_{\mathsf{T}}}$ distribution
- First analysis from a **joint China**-**France** PhD supervision

ALICE

Z⁰ production in p-Pb collisions at 8.16 TeV

 Small difference between free and nuclear PDFs in calculations: all in agreement with data

MCFM: <u>Campbell, Neumann, JHEP 12 (2019) 034</u> CT14: <u>Dular et. al., PRD 93 (2016) 033006</u> nCTEQ15: <u>Kovarik et. al., PRD 93 (2016) 085037</u> D. Stocco FEWZ: <u>Gavin, Petriello, S. Quackenbush, CPC 182 (2011) 2388-2403</u> CT14+EPPS16: <u>Eskola et. al., EPJ C77 (2017) 163</u> nCT15WZ: A. Kusina et. al., EPJC 80 (2020) 968

Workshop Wuhan - 19-24/10/2024

W[±] production in p-Pb collisions at 8.16 TeV

- Calculations underestimate data at smaller rapidity values both at forward and backward rapidities
- 3.5σ deviations from free-PDF / calculation (MCFM+CT14) at the largest positive rapidity

 MCFM: Campbell, Neumann, JHEP 12 (2019) 034
 FEWZ: Gavin, Petriello, S. Quackenbush, CPC 182 (2011) 2388-2403

 CT14: Dular et. al., PRD 93 (2016) 033006
 CT14+EPPS16: Eskola et. al., EPJ C77 (2017) 163

 nCTEQ15: Kovarik et. al., PRD 93 (2016) 085037
 nCT15WZ: A. Kusina et. al., EPJC 80 (2020) 968
 nNNPDF: Khalek et al., JHEP 09 (2020) 183

 D. Stocco
 Workshop Wuhan - 19-24/10/2024
 9

W[±]: comparison with other experiments

- Complementarity between ALICE and CMS <u>PLB 800 (2020) 135048</u>
 - ALICE reaches largest y region, exploring Bjorken-x region down to x ~ 10⁻⁴ at forward rapidities
- Suppression of W⁺ production at forward rapidity, consistent with pQCD calculations with nPDFs

CT14+EPPS16: Eskola et. al., EPJ C77 (2017) 163

Z⁰ production in Pb-Pb collisions at 5.02 TeV

JHEP 09 (2020) 076

 Data well described by calculations with nPDFs

• 3.5σ discrepancy w.r.t. calculations with free PDF

ALI-PUB-347344

MCFM: <u>Campbell, Neumann, JHEP 12 (2019) 034</u> CT14: <u>Dular et. al., PRD 93 (2016) 033006</u> CT14+EPPS16: <u>Eskola et. al., EPJ C77 (2017) 163</u> D. Stocco FEWZ: <u>Gavin, Petriello, S. Quackenbush, CPC 182 (2011) 2388-2403</u> nCTEQ15: <u>Kovarik et. al., PRD 93 (2016) 085037</u> CT14+ EPS09: <u>Helenius et al., JHEP 07 (2012) 073</u>

Workshop Wuhan - 19-24/10/2024

W[±] production in Pb-Pb collisions at 5.02 TeV

- Comparison between ALICE and ATLAS (<u>EPJC 79 (2019) 935</u>) in a complementary y region
 - EPPS16 (Eskola et. al., EPJ C77 (2017) 163) results in agreement with ALICE data but underestimate ATLAS data
- Suppression of W⁺ production at forward rapidity, consistent with pQCD calculations with nPDFs

Shadowing in the σ_{inel} cross section?

 Better agreement if inelastic nucleon-nucleon cross section for binary scaling is reduced due to shadowing

Eskola et al., PRL 125 (2020) 21, 212301

W[±] results as a function of centrality

- Change of σ_{inel} cross section does not seem to improve the agreement, but larger statistics needed to conclude

ALICE

Testing the centrality estimation

• Geometric bias expected in peripheral collisions

• Larger statistics needed to conclude

HG-PYTHIA: Loizides, Morsch, PLB 773 (2017) 408-411

W[±] and Z⁰ boson production in pp collisions at 13 TeV

- First measurement in pp collisions at 13 TeV with ALICE
- In agreement with calculations within uncertainties

CT14nnlo: Dulat et al., PRD 93 (2016) 033006 CT18nlo: Yan et al., PRD 107 (2023) 116001 NNPDF4: Ball et al., EPJC 82 (2022) 428

Multiplicity dependence of W[±] and associated hadron

- W[±] boson production scales with charged particle multiplicity
- Faster-than linear increase of associated hadron production
 - Colour reconnection
 <u>Christiansen, Skand, JHEP 08 (2015) 003</u>
 - Auto-correlation in multiplicity estimation between jetfragmentation products and hadrons <u>Weber et al., EPJC 79 (2019) 1, 36</u>

ALI-PREL-505996

Conclusions

- ALICE measured W[±] and Z⁰ boson production in several collisions system and energies
- p-Pb and Pb-Pb collisions:
- Study and constrain the nuclear parton distribution functions at large rapidities
 - Significant difference w.r.t. free PDFs observed

pp collisions:

- First EW boson measurement in pp collisions with ALICE
- W[±] production scales linearly with charged particle multiplicity; fasterthan-linear increase observed for associated hadron production
- Significant increase in luminosity expected in Run 3 => improve statistical precision!

Backup

CMS and ATLAS

Geometry and centrality selection effects visible in peripheral Pb-Pb collisions

HG-PYTHIA describes CMS data but some tension with ATLAS data

HG-PYTHIA: Loizides, Morsch, PLB 773 (2017) 408-411