Workshop on Advances,Innovations, and Prospects in High-Energy Nuclear Physics Deep Learning for nuclear EoS at extreme conditions

Long-Gang Pang 庞龙刚 Central China Normal University

Oct. 20-24, WuHan

- The nuclear EoS describes the relationships between **pressure p, energy density e, temperature T, net baryon density ρ** and **chemical potential µ**. For instance, p(ρ, T), $p(\mu, T)$ and $e(\rho, T)$
- Crucial for understanding the **evolution of**
 early universe, **supernova explosions**,
 neutron star stability, heavy element

synthesis, and heavy-jon collision **early universe**, **supernova explosions**, **neutron star stability**, **heavy element synthesis**, and **heavy-ion collision experiments**
- It also constrains two-body and three-body nuclear interactions as well as non perturbative Quantum Chromodynamics (QCD).

Nuclear EoS employed in astrophysical studies

F. Weber, IoP Publishing, Bristol(1999)

2

T Kojo, PD Powell,YF Song,and G Baym, 2015 S. Rosswog et al., Astronomy and Astrophysics 341, 499 (1999).

3

- The nuclear EoS describes the relationships between **pressure p, energy density e, temperature T, net baryon density ρ** and **chemical potential µ**. For instance, p(ρ, T), $p(\mu, T)$ and $e(\rho, T)$
- $p(\mu, T)$ and $e(\rho, T)$

 Crucial for understanding the **evolution of**
 early universe, supernova explosions, early universe, **supernova explosions**, **neutron star stability**, **heavy element synthesis**, and **heavy-ion collision experiments**
- It also constrains two-body and three-body nuclear interactions as well as non perturbative Quantum Chromodynamics (QCD).

Nuclear EoS employed in HIC physics

LG Pang, H Petersen, XN Wang, PRC 2018

4

Nuclear EoS in relativistic hydrodynamics

Name of CLVisc:

1. CCNU-LBNL Viscous Hydro, CCNU = Central China Normal University 2. A 3+1D viscous hydro parallized on GPU using OpenCL

Purpose: Describe the non-equilibrium space-time evolution of hot QCD matter **Feature: 60 times faster** for hydrodynamic evolution, **100 times faster** for hadronization

> L.G. Pang, Q. Wang and X. N. Wang, PRC 86 (2012) 024911 L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015 L.G. Pang, H.Petersen, XN Wang, PRC97(2018)no.6,064918

CLVisc for different EoS

eta/s = 0 Lattice QCD EoS (smooth cross over)

eta/s = 0 First order phase transition

eta/s = 0.08 Lattice QCD EoS

eta/s = 0.08 First order phase transition eta/s: shear viscosity / entropy density

Will the effect of EoS survive the dynamical evolution and exist in the final state hadrons?

EoS for different phase transition types

baryon chemical potential μ_B

Determine nuclear phase transitions

Nature Communications 2018, **LG. Pang**, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.

Spinodal vs Maxwell 1st order phase transition

J. Steinheimer, L.G. Pang, K. Zhou, V. Koch and J. Randrup, JHEP 12 (2019) 122

Looking for self similarity in momentum space

Self similarity, scaling invariance

Dynamical Edge Convolution Network

PLB 827(2022) 137001, Y.-G. Huang, L.-G. Pang, X.F. Luo and X.-N. Wang

Protons, Predicted labels

PLB 822 (2021) 136669, Y.J Wang, F.P. Li, Q.F. Li, H.L. L¨u, and K. Zhou

Auto Encoder for order parameter

PHYSICAL REVIEW RESEARCH 2, 043202 (2020)

Nuclear liquid-gas phase transition with machine learning

Rui Wang \bullet , ^{1,2,*} Yu-Gang Ma, ^{1,2,†} R. Wada,³ Lie-Wen Chen \bullet ,⁴ Wan-Bing He,¹ Huan-Ling Liu,² and Kai-Jia Sun^{3,5}

Jet eloss and medium response

Can Being Underwater Protect You From Bullets?

66 If the bullet is shot from an angle of 30 Degrees, then being underwater in the range of 3 -5 feet (0.9-1.5 meters) can ensure safety from most guns.

Jet quenching in hot QGP

Nuclear EoS:
$$
c_s^2 = \frac{dP}{d\epsilon} = \sin^2 \theta
$$

 $\frac{2}{s} = \frac{ar}{d\epsilon} = \sin^2 \theta$ Shear Viscosity: width of the shock wave

- Random production locations and propagating directions relative to collective flow
- ●Tilted by different path length and collective flow

L.M. Satarov, H. Stoecker, I.N. Mishustin, PLB 627 (2005) 64-70

DL assisted jet tomography (gamma-jet)

Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652

Training data: CoLBT(LBT + CLVisc)

$$
p\partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^0)
$$

$$
\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)
$$

$$
j^{\nu} = \sum_{i} p_i^{\nu} \delta^{(4)}(x - x_i) \theta(p_{cut}^0 - p \cdot u)
$$

LBT: YY He, T Luo, XN Wang, Y Zhu, PRC 91 (2015) 054908, PRC 97 (2018) 1, 019902 -10

CLVisc:

LG Pang, Q Wang, XN Wang, PRC 86 (2012) 024911

LG Pang, H Petersen, XN Wang, PRC 97 (2018) 6, 064918

XY Wu, GY Qin, LG Pang, XN Wang,PRC 105 (2022) 3, 034909

CoLBT:

W Chen, T Luo, SS Cao, LG Pang, XN Wang, PLB 777 (2018) 86-90

DL assisted jet tomography

Z Yang, YY He, W Chen, WY Ke, **LG Pang**, XN Wang, EPJC 83 (2023) 7, 652

Enhance the Diffusion Wake signal

Z Yang, YY He, W Chen, WY Ke, LG Pang, XN Wang, EPJC 83 (2023) 7, 652 Z Yang, T Luo, W Chen, LG Pang, XN Wang, PRL 130 (2023) 5,052301

Effective theory: DL For Quasi Particle Mass

FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023

$$
\ln Z(T) = \ln Z_g(T) + \ln Z_{u,d}(T) + \ln Z_s(T),
$$

Fermi-Dirac distributions,

$$
\ln Z_g(T) = -\frac{16V}{2\pi^2} \int_0^\infty p^2 dp
$$

\n
$$
\ln \left[1 - \exp\left(-\frac{1}{T} \sqrt{p^2 + m_g^2(T)} \right) \right], \quad (2)
$$

\n
$$
\ln Z_{q_i}(T) = +\frac{12V}{2\pi^2} \int_0^\infty p^2 dp
$$

\n
$$
\ln \left[1 + \exp\left(-\frac{1}{T} \sqrt{p^2 + m_{q_i}^2(T)} \right) \right], \quad (3)
$$

quarks, $m_s(T, \theta_2)$ for strange quark and $m_q(T, \theta_3)$ for gluons, where θ_1 , θ_2 and θ_3 are the parameters in DNN shown in Fig. 1.

The resulting pressure and energy density are computed using the following statistical formulae,

$$
P(T) = T\left(\frac{\partial \ln Z(T)}{\partial V}\right)_T, \tag{5}
$$

$$
\epsilon(T) = \frac{T^2}{V} \left(\frac{\partial \ln Z(T)}{\partial T} \right)_V, \tag{6}
$$

FuPeng Li, HL Lu, LG Pang, GY Qin, PLB 2023

Location of minimum eta/s

Thesis of Valeriya Mykhaylova, 2023

Extend Quasi Parton Model to finite muB

Model:

Deep learning Quasi Parton Model Effective theory of strongly coupled QGP and nuclear matter at finite baryon density

Training data: Lattice QCD + HRG PRD 95, 054504 (2017) PRL118, 182301 (2017) PRD 90, 094503 (2014)

 $\frac{4}{2}$

 0.08

0.06

 0.02

 $0.00 -$

0.050

0.075

 ≈ 0.04

 0.1

 $\frac{0.2}{T[\text{GeV}]}$

 0.3

0.100 0.125 0.150 0.175

T[GeV]

 04

 $-\bullet$ LQCD, and, HRG, $\mu_B = 0$

 $\frac{0.2}{T[\text{GeV}]}$

0.050 0.075 0.100 0.125 0.150 0.175

T[GeV]

 0.3

 0.4

 \rightarrow network, $\mu_B = 0$

 01

15.0

 $12₅$

 10.0 $\sqrt{7^3}$

 0.15

0.05

 0.00 – $...$

 \mathbb{R}^{∞} 0.10

●We explored 3 approaches to studying QCD EoS using deep learning

- ●For soft probes, DL serves as an EoS-meter
- ●For hard probes, DL assisted jet tomography aids in the investigation of QCD EoS through Mach cones
- ●DL and auto-diff are widely used to represent unknown functions to construct effective theories
- ●DL quasi parton model are extended to finite muB region