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~𝟎 ~𝟏 ~𝟏𝟎

𝝉 ( Τ𝒇𝒎 𝒄)~𝟎. 𝟏

⚫ 𝑚𝑄 ≫ Λ𝑄𝐶𝐷: their initial production can be well described by pQCD

⚫ 𝑚𝑄 ≫ 𝑇: thermal abundance in QGP is negligible ~ final multiplicity set by the initial hard production

⚫ 𝑚𝑄 ≫ 𝑔𝑇: many soft scatterings necessary to change significantly the momentum of HQ ~ Brownian motion

Heavy quarks (HQ) as probes of QGP
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Bass and Hees]
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Langevin dynamics with Gluon Radiation (LGR)

Bulk matter Glauber model (SuperMC) (3+1)D viscous hydro (vHLLE) Cooper-Frye (iSS)

Heavy quark
Glauber for spatial and

FONLL+EPS09 for 
momentum

Langevin transport equation 
modified for collisional+radiation

“Dual” hadronization 
model: fragmentation + 

coalescence

⚫ Hybrid modeling
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Can we even go deeper,

in particular at low and moderate 𝒑𝐓?

+ based on:  PRD 109, 096028 (2024)

EPJC 81, 536 (2021)



Outline

⚫ HQ transport in perturbation theory: the soft-hard factorized approach

⚫ HQ transport in non-perturbation theory: the background field effective 

theory

⚫ Numerical results for HQ energy loss and transport coefficients

⚫ Summary and outlooks
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⚫ Infrared regulator can be well determined on first principles:

soft-hard factorization approach [Braaten and Yuan, PRL PRL 66, 2183 (1991)]

✓ hard collision: 𝑡 > |𝑡∗| , where the pQCD Born approx. is valid

✓ soft  collision: 𝑡 < |𝑡∗| , where the t-channel long wavelength 

gluons are screened by the mediums ~ they feel the presence of 

the medium and require the resummation ~ Hard Thermal Loop 

(HTL) approximation

⚫ Divergence from t-channel contribution 
𝑑𝜎

𝑑𝑡
∝ |ℳ2| ∝

1

𝑡2

~ infrared divergence when |𝑡|՜0

Soft-hard factorization model

𝑝1
𝜇
− 𝑝3

𝜇
= 𝜔, Ԧ𝑞

⚫ The intermediate scale 𝑡∗ is formally chosen as

𝑚𝐷
2 ≪ −𝑡∗ ≪ 𝑇2

implying weak-coupling or high-temperature limit
[Braaten and Yuan, PRL 66, 2183 (1991)]



Collisional energy loss: strategy
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−
𝑑𝐸

𝑑𝑧
= න𝑑3 Ԧ𝑞

𝑑𝛤

𝑑3 Ԧ𝑞

𝜔

𝑣1

⚫ The energy loss per traveling distance

where, 𝛤 is the interaction rate between HQ and medium partons,

𝛤 = 𝛤(𝑡)
𝑠𝑜𝑓𝑡

+ 𝛤(𝑡)
ℎ𝑎𝑟𝑑 + 𝛤(𝑠+𝑢)

so the total energy loss

−
𝑑𝐸

𝑑𝑧
= −

𝑑𝐸

𝑑𝑧
𝑡

𝑠𝑜𝑓𝑡

+ −
𝑑𝐸

𝑑𝑧
𝑡

ℎ𝑎𝑟𝑑

+ −
𝑑𝐸

𝑑𝑧
𝑠+𝑢



Collisional energy loss: hard component
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𝛤𝑄𝑖(𝐸1, 𝑇) =
1

2𝐸1
න
𝑝2

𝑛 𝐸2
2𝐸2

න
𝑝3

1

2𝐸3
න
𝑝4

𝑛 𝐸4
2𝐸4

ℳ2
𝑄𝑖

2𝜋 4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)

⚫ The interaction rate for a given elastic process 𝑄 + 𝑖 ՜ 𝑄 + 𝑖 (𝑖 = 𝑞, 𝑔)

and the total energy loss for the hard collisions in t-channel

−
𝑑𝐸

𝑑𝑧
𝑡

ℎ𝑎𝑟𝑑

=
1

256𝜋3 Ԧ𝑝1
2 

𝑖=𝑞,𝑔

න
| Ԧ𝑝2|𝑚𝑖𝑛

∞

𝑑| Ԧ𝑝2|𝐸2𝑛(𝐸2)න
−1

𝑐𝑜𝑠𝜓|𝑚𝑎𝑥

𝑑(𝑐𝑜𝑠𝜓)න
𝑡𝑚𝑖𝑛

𝑡∗

𝑑𝑡
𝑏

𝑎3
ℳ2

𝑄𝑖(𝑡)

⚫ The contributions from s- and u-channels are not divergent for small 

momentum transfers → no need to introduce the intermediate cutoff

(| Ԧ𝑝2|𝑚𝑖𝑛⇒ 0) (𝑐𝑜𝑠𝜓|𝑚𝑎𝑥⇒ 1) (𝑡∗ ⇒ 0)(𝑖 = 𝑔)



𝛤 𝐸1, 𝑇 = −
1

2𝐸1
𝑛𝐹 𝐸1 𝑇𝑟 𝑃1 ∙ 𝛾 + 𝑚1 𝐼𝑚Σ(𝑃1)

⚫ Basic formulas [Weldon, PRD 28, 2007 (1983)]
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Collisional energy loss: soft component

with the HQ self-energy in Minkowski space

Σ 𝑃1 = 𝑖𝐶𝐹𝑔
2න

𝑑4𝑄

2𝜋 4
Δ𝜇𝜈(𝑄)𝛾𝜇

1

𝑃1 − 𝑄 ∙ 𝛾 − 𝑚1
𝛾𝜈

and the HTL gluon propagator in Coulomb gauge

Δ𝜇𝜈 𝑄 = − (𝛿𝜇0𝛿𝜈0)Δ𝐿−(𝛿
𝑖𝑗 − ො𝑞𝑖 ො𝑞𝑗)Δ𝑇

The longitudinal and transverse effective propagators are

[Blaizot and Iancu, Phys. Rep. 359, 355 (2002); Alberico et. al., EPJC 71, 1666 (2011)]

(∆𝐿 )
−1= Ԧ𝑞2 +𝛱𝐿 (∆𝑇 )

−1= (𝑞0)2−Ԧ𝑞2 −𝛱𝑇

𝑸

𝑷𝟏 𝑷𝟏𝑷𝟏 −𝑸



⚫ Basic formulas [Weldon, PRD 28, 2007 (1983)]
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Collisional energy loss: soft component

𝑸

𝑷𝟏 𝑷𝟏𝑷𝟏 −𝑸

𝛤 𝐸1, 𝑇 = 𝐶𝐹𝑔
2න

𝑞

න𝑑𝜔𝑛𝐵 𝜔 𝛿(𝜔 − Ԧ𝑣1 ∙ Ԧ𝑞) 𝜌𝐿 𝜔, 𝑞 + Ԧ𝑣1
2 1 − (ො𝑣1 ∙ ො𝑞)2 𝜌𝑇 𝜔, 𝑞

with the longitudinal and transverse spectral functions

𝜌 Τ𝐿 𝑇 𝜔, 𝑞 ≡ 2 ∙ 𝐼𝑚Δ Τ𝐿 𝑇 𝜔 + 𝑖𝜂, Ԧ𝑞 (𝜂 ՜ 0+)

The total energy loss in soft collisions reads

−
𝑑𝐸

𝑑𝑧
𝑡

𝑠𝑜𝑓𝑡

=
𝐶𝐹𝑔

2

8𝜋2𝑣1
2න

𝑡∗

0

𝑑𝑡(−𝑡)න
0

𝑣1

𝑑𝑥
𝑥

(1 − 𝑥2)2
𝜌𝐿 𝑡, 𝑥 + (𝑣1

2 − 𝑥2)𝜌𝑇 𝑡, 𝑥

[Blaizot and Iancu, Phys. Rep. 359, 355 (2002)]

𝛤 𝐸1, 𝑇 = −
1

2𝐸1
𝑛𝐹 𝐸1 𝑇𝑟 𝑃1 ∙ 𝛾 + 𝑚1 𝐼𝑚Σ(𝑃1)



Collisional energy loss: hard+soft
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−
𝑑𝐸

𝑑𝑧
= −

𝑑𝐸

𝑑𝑧
𝑡

𝑠𝑜𝑓𝑡

+ −
𝑑𝐸

𝑑𝑧
𝑡

ℎ𝑎𝑟𝑑

+ −
𝑑𝐸

𝑑𝑧
𝑠+𝑢

−
𝑑𝐸

𝑑𝑧
𝑡

ℎ𝑎𝑟𝑑

=
1

256𝜋3 Ԧ𝑝1
2 

𝑖=𝑞,𝑔

න
| Ԧ𝑝2|𝑚𝑖𝑛

∞

𝑑| Ԧ𝑝2|𝐸2𝑛(𝐸2)න
−1

𝑐𝑜𝑠𝜓|𝑚𝑎𝑥

𝑑(𝑐𝑜𝑠𝜓)න
𝑡𝑚𝑖𝑛

𝑡∗

𝑑𝑡
𝑏

𝑎3
ℳ2

𝑄𝑖(𝑡)

−
𝑑𝐸

𝑑𝑧
𝑡

𝑠𝑜𝑓𝑡

=
𝐶𝐹𝑔

2

8𝜋2𝑣1
2න

𝑡∗

0

𝑑𝑡(−𝑡)න
0

𝑣1

𝑑𝑥
𝑥

(1 − 𝑥2)2
𝜌𝐿 𝑡, 𝑥 + (𝑣1

2 − 𝑥2)𝜌𝑇 𝑡, 𝑥

−
𝑑𝐸

𝑑𝑧
𝑠+𝑢

=
1

256𝜋3 Ԧ𝑝1
2න

0

∞

𝑑| Ԧ𝑝2|𝐸2𝑛(𝐸2)න
−1

1

𝑑(𝑐𝑜𝑠𝜓)න
𝑡𝑚𝑖𝑛

0

𝑑𝑡
𝑏

𝑎3
ℳ2

𝑄𝑔(𝑠+𝑢)



⚫ s + u channel contribution is negligible since the relevant interaction rate is much 

smaller than the others

⚫ The soft contribution dominates in the considered energy region
14

Collisional energy loss

[PRD 109, 096028 (2024)]



⚫ The 𝑇- and 𝐸-dependencies are similar to the results for the

scattering of a light hard parton off a light soft parton

[Peigne and Peshier, PRD 77, 114017 (2008]

Toward an analytical form

15

The sum of these contributions 
cancels the 𝑡∗-dependence

[Qin et. al., PRL 100, 072301 (2008)]

 High-energy approach (HEA): 𝐸 ≫ Τ𝑚𝑄
2 𝑇  Weak-coupling approximation: 𝑚𝐷

2 ≪ −𝑡∗ ≪ 𝑇2

 Large momentum transfer: −𝑡~𝑠 ≫ 𝑚1
2

 Backward scattering: 𝜃 = 𝜋



⚫ As expected, the asymptotic behavior is presented toward high energy, while a considerable

variation is found at low and moderate energy for each channel

“Full” vs. “HEA”

16

[PRD 109, 096028 (2024)]



Transport coefficients
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𝑝1
𝜇
− 𝑝3

𝜇
= 𝜔, Ԧ𝑞 = (𝜔, Ԧ𝑞𝑇 , 𝑞𝐿)

⚫ 𝜅 Τ𝐿 𝑇 describes the momentum fluctuations in the 

direction that parallel / perpendicular (i.e., longitudinal 

/ transverse) to the HQ propagation

⚫ It is found that the soft components are significant at 

low energy, while they are compatible at larger values

[EPJC 81, 536 (2021)]
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How about the non-perturbative 

contributions ?

+ based on: arXiv: 2410.*****



weak-coupling approach

(high-temperature limit)

⚫ Strong-coupling behavior in the “semi-QGP”, 𝑇𝐶 < 𝑇 ≲ 3 − 4 𝑇𝐶, may have an important

influence on the HQ energy loss which should be reconsidered in an effective theory

⚫ Non-perturbative contribution included

𝑻 ≪ 𝚲𝑸𝑪𝑫 𝑻~𝚲𝑸𝑪𝑫

𝑻

𝑻 ≫ 𝚲𝑸𝑪𝑫
wQGP: screeningVacuum: confined sQGP𝑻𝑪 few 𝑻𝑪

Semi-QGP near 𝑻𝒄

[Hidaka and Pisarski, PRD 78, 071501 (2008)] 19



[Gupta, et. al., PRD 77, 034503 (2008)]

How to describe the semi-QGP ?

20

𝑇 < 𝑇𝑐： 𝓁 ≈ 0 𝑇~𝑇𝑐
+: 𝓁 ≈ 0.5

𝑇 ≈ 2𝑇𝑐: 𝓁 ≈ 0.9 𝑇 ≈ 4𝑇𝑐: 𝓁 ≈ 1.1

4𝑇𝑐 ≲ 𝑇 ≲ 12𝑇𝑐: 𝓁 ≈ 𝑐𝑜𝑛𝑠𝑡.

⚫ For pure gauge theory without quarks, the order 

parameter of the deconfining phase transition is 

the Polyakov loop which has a nontrivial 

dependence on the temperature

Phase Temperature 𝓵 from LQCD Method

QGP 𝑇 ≳ 3 − 4𝑇𝑐 𝓁 ≈ 1 Perturbation theory (pQCD + HTL)

semi-QGP 𝑇𝑐 < 𝑇 ≲ 3 − 4𝑇𝑐 0 < 𝓁 < 1 Background field effective theory

Hadronic 𝑇 < 𝑇𝑐 𝓁 ≈ 0 Effective theory (HRG)



The background field effective theory
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⚫ Introducing a classical background field to describe the nontrivial 

Polyakov loop in the deconfining phase transition for 𝑆𝑈 𝑁

(𝐴0
𝑐𝑙)𝑎𝑏=

1

𝑔
𝒬𝑎𝛿𝑎𝑏; 𝑳 = 𝒫 exp(𝑖𝑔 0

𝛽
𝐴0
𝑐𝑙 𝑑𝜏);    𝓁 =

1

𝑁
𝑇𝑟𝑳

⚫ The effective potential reads

𝒱 = 𝒱𝑝𝑡 + 𝒱𝑛𝑝𝑡 =
2𝜋2𝑇4

3


𝑎𝑏

𝒫𝑎𝑏,𝑏𝑎 𝐵4 𝑞𝑎𝑏 +
𝑀2𝑇2

2


𝑎𝑏

𝒫𝑎𝑏,𝑏𝑎 𝐵2 𝑞𝑎𝑏

[Hidaka and Pisarski, PRD 80, 036004 (2008); Guo and Kuang, PRD 104, 014015 (2021)]

𝑞𝑐𝑜𝑛𝑓 =
1

3

⚫ The 𝑇-dependent background field obtained from the relevant EoM for the 
background field (𝑁 = 3)

𝑞𝑎 ≡ Τ𝒬𝑎 2𝜋𝑇 = (𝑞, 0, −𝑞)

𝑞𝑎𝑏 ≡ 𝑞𝑎- 𝑞𝑏

𝑞𝑑𝑒𝑐𝑜𝑛𝑓 =
1

36
9 − 81 − 80

𝑇𝑐
2

𝑇2



Resummed gluon propagator

22

⚫ The off-diagonal components

[Guo and Kuang, PRD 104, 014015 (2021)]

⚫ The diagonal components



Interaction rate: hard component

23

BF effective theory 

Perturbative

（BF enters like an imaginary chemical potential）



Interaction rate: soft component
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⚫ The off-diagonal components

⚫ The diagonal components

sum over color

high temperatureBF effective theory Perturbative

cross check



Τ𝒅𝑬 𝒅𝒙: non-pert. vs pert.

25

Preliminary results

⚫ The dependence on the medium temperature is similar

⚫ As expected, the non-perturbative contribution is more significant in the entire semi-QGP

region

𝑛𝑜𝑛 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑣𝑒

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑣𝑒

Preliminary results



𝜿 Τ𝑻 𝑳: non-pert. vs pert.

26

Preliminary results Preliminary results

⚫ Similar trend observed



⚫ To investigate the non-perturbative contributions, we updated the above framework by using

the background field effective theory. Our (preliminary) results show

✓ dependence of Τ𝑑𝐸 𝑑𝑥 and 𝜅 Τ𝑇 𝐿 on the medium temperature is similar w.r.t. that obtained in

perturbative QCD medium

✓ comparing with the results from perturbative theory, BF suppress Τ𝑑𝐸 𝑑𝑥, in particular in the entire

semi-QGP region 𝑇𝑐 < 𝑇 ≲ 3 −4𝑇𝑐

⚫ Within the soft-hard factorization approach, we calculated the HQ collisional energy loss and

transport coefficients at leading order in the QCD coupling constant. Our results show

✓ a better description of HQ transport in perturbative QCD medium, in particular at 𝐸 ≲ 50 𝐺𝑒𝑉,

where the heavy-flavor probes are measured comprehensively at RHIC and LHC energies

✓ the full 𝑑𝐸/𝑑𝑧 can be simplified to an analytical form (Peigne-Peshier formula) in the high energy

approximation 𝐸 ≫ Τ𝑚𝑄
2 𝑇

27

Summary and outlooks

⚫ New paths forward for future work

✓perform the model-data comparisons at RHIC and LHC energies
27



Thank you all for the attention !

Three Gorges Dam
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𝒅𝒑

𝒅𝒕
= 𝑭𝑫 + 𝑭𝑻 + 𝑭𝑮

⚫ Stochastic thermal force:  < 𝐹𝑇
𝑖 𝑡 ∙ 𝐹𝑇

𝑗
𝑡′ >= [𝜿𝑻𝑃⊥

𝑖𝑗
+ 𝜿𝑳𝑃∥

𝑖𝑗
] ∙ 𝛿(𝑡 − 𝑡′)

⚫ Deterministic drag force: 𝑭𝑫 = −𝜼𝑫 ∙ 𝒑

⚫ Recoil force from gluon radiation: Ԧ𝐹G = −σ
𝑗=1

𝑁𝑔 𝑑 Ԧ𝑝𝐺

𝑑𝑡

30

where, the radiation probability taken from Higher Twist calculation

𝑑𝑁𝑔

𝑑𝑧𝑑𝑘⊥
2𝑑𝑡

=
2𝛼𝑠 𝑘⊥ 𝐶𝐴

𝜋𝑘⊥
4 ∙ 𝑃 𝑧 ෝ𝒒𝒒 ∙

𝑘⊥
2

𝑘⊥
2 + 𝑧2𝑚𝑄

2

4

∙ 𝑠𝑖𝑛2(
∆𝑡

2𝜏𝑓
)

Guo and Wang, Phys. Rev. Lett. 85, 3591 (2000); Zhang et.al., Phys. Rev. Lett. 93,

072301 (2004); Qin and Muller, Phys. Rev. Lett. 106, 162302 (2011)

S. Cao, G.Y. Qin, and S. A. Bass, 

Phys. Rev. C 88, 044907 (2013).

Langevin dynamics with Gluon Radiation (LGR)
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Assumptions

⚫ Isotropic mom. diff.: 𝜅𝑇 = 𝜅𝐿 ≡ 𝜅;

⚫ momentum independent 

behavior of 𝜅: Τ𝜕𝜅 𝜕𝑝 = 0;

⚫ Einstein relation 𝜂𝐷 = Τ𝜅 (2𝑇𝐸).

𝜼𝑫 =
𝟏

𝟐𝝅𝑻𝑫𝒔

𝟐𝝅𝑻𝟐

𝑬

𝜿 =
𝟏

𝟐𝝅𝑻𝑫𝒔
𝟒𝝅𝑻𝟑

ෝ𝒒𝒒 ≈ 𝟐𝜿

Only one parameter 

left:  (scaled) spatial 

diffusion coefficient 

2𝜋𝑇 ∙ 𝐷𝑠(𝑇)

⚫ Modeling via polynomials: 2𝜋𝑇𝐷𝑠
𝑇

𝑇𝑐
= 𝑑0 + 𝑑1

𝑇

𝑇𝑐
+ 𝑑2(

𝑇

𝑇𝑐
)2+⋯

✓ without the need of assuming any theoretically-motivated 
temperature dependence 

⚫ Linear ansatz: 2𝜋𝑇𝐷𝑠
𝑇

𝑇𝑐
≈ 𝛼

𝑇

𝑇𝑐
+ 𝛽, where the slope 0 ≤ 𝛼 ≤ 9

and the intercept −8.5 ≤ 𝛽 ≤ 4, will be optimized without 
presuming any reasonable values → 𝛼 = 6.5 and 𝛽 = −5.5 
obtained via model-data comparison (𝜒2~1.1 )

X. Dong and V. Greco, Prog. Part. Nucl. Phys. 104, 97-141 (2019)

“Minimal model”as the first step
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⚫ Instantaneous approach utilized

⚫ Momentum spectrum of mesons (𝑴) formed from the coalescence of heavy quark

(𝑸) and anti-light-quark (ഥ𝒒) is then given by

𝑑𝑁𝑀
𝑑3 Ԧ𝑝𝑀

= 𝑔𝑀න𝑑6𝜉𝑄 𝑑
6𝜉ത𝑞𝑓𝑄𝑓ത𝑞 ∙ 

𝑛=0

1

ഥ𝑊𝑀
𝒏
𝛿3( Ԧ𝑝𝑀 − Ԧ𝑝𝑄 − Ԧ𝑝ത𝑞)

where the overlap integral of the Wigner function of the 𝑄ത𝑞 pair and the meson in

n excited state

ഥ𝑊𝑀
𝒏

Ԧ𝑦𝑀 , 𝑘𝑀 = න
𝑑6𝜉𝑄

′

2𝜋 3

𝑑6𝜉ത𝑞
′

2𝜋 3
𝑊𝑄( Ԧ𝑥𝑄

′ , Ԧ𝑝𝑄
′ )𝑊ത𝑞( Ԧ𝑥 ത𝑞

′ , Ԧ𝑝ത𝑞
′ )𝑊𝑀

𝑛
( Ԧ𝑥𝑀

′ , Ԧ𝑝𝑀
′ )

=
𝜆𝑛

𝑛!
𝑒−𝜆 𝜆 =

1

2

𝑦𝑀
2

𝜎𝑀
2 + 𝜎𝑀

2𝑘𝑀
2

✓parton (meson) wave function behaves the Gaussian wave packet (simple 

harmonic oscillator)

K.C. Han et.al., Phys. Rev. C 93, 045207 (2016)

Hadronization via heavy-light coalescence
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⚫ Larger coalescence probability  for more central collisions → the coalescence partner density is larger in 

0-10% than in 30-50%, resulting in a larger probability to form heavy-light combinations

⚫ Coalescence into a ground state has maximum probability at 𝑝𝑇 ∼ 0, and then decreases toward high 𝑝𝑇, 

due to the difficulty of finding a coalescence partner in this region

Meson (𝑸ഥ𝒒) Meson 

(𝑸ഥ𝒒)

Hadronization via heavy-light coalescence
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Tree-level Feynman diagrams in vacuum

𝑄𝑞: 𝑡 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑄𝑔: 𝑡 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑄𝑔: 𝑠 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑄𝑔: 𝑢 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

⚫ The elastic scattering processes between 

heavy quark (𝑄) and the quark-gluon plasma 

constituents (𝑖 = 𝑞, 𝑔)

𝑸 𝑷𝟏 + 𝒊 𝑷𝟐 ՜ 𝑸 𝑷𝟑 + 𝒊 𝑷𝟒



Spectral functions



𝛤 𝐸1, 𝑇 = −
1

2𝐸1
𝑛𝐹 𝐸1 𝑇𝑟 𝑃1 ∙ 𝛾 + 𝑚1 𝐼𝑚Σ(𝑃1)

⚫ Basic formulas [Weldon, PRD 1983]

36

Collisional energy loss: soft component

with the HQ self-energy

Σ 𝑃1 = 𝑖𝐶𝐹𝑔
2න

𝑑4𝑄

2𝜋 4
Δ𝜇𝜈(𝑄)𝛾𝜇

1

𝑃1 − 𝑄 ∙ 𝛾 − 𝑚1
𝛾𝜈

and the HTL gluon propagator in Coulomb gauge

Δ𝜇𝜈 𝑄 = − 𝛿𝜇0𝛿𝜈0 Δ𝐿 − 𝛿𝑖𝑗 − ො𝑞𝑖 ො𝑞𝑗 Δ𝑇

The longitudinal and transverse effective propagators are

[Blaizot and Iancu, Phys.Rep. 2002; Alberico et. al., EPJC 2011]

(∆𝐿 )
−1= Ԧ𝑞2 +𝛱𝐿

(∆𝑇 )
−1= (𝑞0)2−Ԧ𝑞2 − 𝛱𝑇

𝛱𝐿 = 𝑚𝐷
2 1 − 𝑄(𝑥)

𝛱𝑇 = Τ𝑚𝐷
2 𝑥2 + (1 − 𝑥2)𝑄(𝑥) 2

𝑥 ≡ Τ𝑞0 | Ԧ𝑞|

𝑄(𝑥) ≡
𝑥

2
𝑙𝑛
𝑥 + 1

𝑥 − 1

𝑸

𝑷𝟏 𝑷𝟏𝑷𝟏 −𝑸



Coupling constant

✓ for hard collision, 𝜇 = −𝑡

✓ for soft collision, 𝜇 = 𝐾 ∙ 𝜋𝑇

⚫ 𝑔 is quantified by the two-loop QCD beta-function [Kaczmarek and Zantow, PRD 2005]



⚫ Bjorken : keep only the logarithmically 

divergent integral over momentum transfer; 

imposing physically reasonable upper and 

lower limits to regulate the divergences
[Bjorken, FERMILAB-Pub-82/59-THY]

⚫ Thoma-Gyulassy : update the Bjorken

approach by including a more careful 

treatment of the infrared divergences
[Thoma and Gyulassy, NPB 1991]

⚫ A common behavior is observed for all the models

Comparison with other models

38

⚫ Lin-Pisarski-Skokov : incorporate partially confinement effect through purely imaginary background 

color charge determined by Polyakov loop from lattice studies, leading reduced quark and gluon 

degrees of freedom                                                                                           [Lin, Pisarski and Skokov, PLB 2014]



Charm vs. Bottom

39

This work (HEA)

⚫ For a give velocity, quark with larger 

mass will lose more its initial energy

Bjorken (HEA)

[Bjorken, FERMILAB-Pub-82/59-THY
(1982)]

Thoma-Gyulassy (HEA)

[Thoma and Gyulassy, NPB 351, 491 (1991)]

Lin (HEA)

[Lin, et. al., PLB 730, 236 (2014)]



Transport coefficients

40Soft collisions Hard collisions



Notations
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⚫ Bernoulli polynomial

⚫ The projection operator in the double line basis



Notations

42
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