

Search for the Chiral Magnetic Effect with Forced Match of Multiplicity and Elliptic Flow in Isobar Collisions at STAR

Yufu Lin(林裕富) Guangxi Normal University, Guilin

Advances, Innovations, and Prospects in High-Energy Nuclear Physics Wuhan, Oct. 19-24, 2024

Chiral Magnetic Effect

In non-central collisions a strong magnetic field is produced \perp to Ψ_R

D. Kharzeev, Phys. Lett. B 633, 260 (2006) D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007). D. Kharzeev, J. Liao, P. Tribedy, arXiv:2405.05427

CME: Charge seperation along the B due to strong magnetic field and local CP violation.

How to detect the CME?

The CME-induced charge transport and other modes of collective motion of the QGP, the azimuthal distribution of final-state particles can be Fourier-decomposed as:

$$\frac{dN_{\alpha}}{d\phi^*} = \frac{N_{\alpha}}{2\pi} \left[1 + 2v_{1,\alpha}\cos(\phi^*) + 2a_{1,\alpha}\sin(\phi^*) + 2v_{2,\alpha}\cos(2\phi^*) + \cdots \right]$$

The subscript α (+ or -) denotes the charge sign of a particle. The coefficients v1 and v2 are called "directed flow" and "elliptic flow," respectively. The coefficient a_1 (with a_n , - = - a_n , +) characterizes the electric charge separation with respect to the RP. S.A. Voloshin, Phys. Rev. C,70, 057901 (2004)

Signal consistent with CME

Background Issues

 $\succ v_2$ + various effects (LCC, TMC, etc.) may explain much/all of the signal.

ALICE & STAR BES-I data

> The positively finite $\Delta \gamma_{112}$ meets the CME expectation, but could contain contributions from backgrounds(ν_2 , nonflow-related)

Isobar Collisions: prospect

Compare the two isobaric systems:

- ✓ CME: B-field² is ~13% larger in Ru+Ru
- ✓ Backgrounds almost same (including flow and Nonflow)

```
\frac{Observable(Ru + Ru)}{Observable(Zr + Zr)} > 1
```

 \checkmark The Isobar collisions offers the unique opportunity to detect CME.

STAR, NUCL SCI TECH 32, 48 (2021)

Isobar Collision at STAR

Interleaved fills for isobar species to minimize systematic differences between two species.

Analysis method: Signed Balance Function(SBF)

Where N $\alpha\beta$ denotes the number of positive -negative pairs with a sign of Sy in an event. Sy is labeled as +1 if $p^{\alpha}y > p^{\beta}y$, and -1 if vice versa, r_{lab} and r_{rest} are r calculate in the laboratory frame and pair rest frame separatly.

A.H. Tang, Chin. Phys. C 44, 054101 (2020)

✓ Both r_{lab}, r_{rest} and R_B are sensitive to the CME signal, and r_{rest} and R_B respond in opposite directions to signal and

Key points in Anomalous Viscous Fluid Dynamics (AVFD) model.

The listed a_1 below is obtained with RP:

n_5/s	$a_{1,+}$ (%)		$a_{1,-}$ (%)	
	Ru+Ru	Zr+Zr	Ru+Ru	Zr+Zr
0	0	0	0	0
0.05	0.37	0.35	0.35	0.33
0.10	0.74	0.69	0.71	0.66
0.20	1.48	1.38	1.42	1.32

✓ The tiny difference in CME signals can be identified in both methods when the backgrounds are identical.

Isobar blind analysis

• Both the ratio of $\Delta \gamma_{112}$ and $\frac{\Delta \gamma_{112}}{\nu_2}$ are smaller than 1.

Isobar blind analysis

STAR, Phys. Rev. C 105, 014901 (2022)

Pre-defined signature of CME is NOT observed.

Unexpected differences of Backgrounds

> The difference of BKG between two Isobar system should be study.

Keep the Zr+Zr original and then match the Ru+Ru Distribution to Zr+Zr.

$$f_{w,bin} = N_{bin(Zr)} / N_{bin(Ru)}$$

$$S_0 += O_{bin(Ru)} \cdot N_{bin(Ru)} \cdot f_{w,bin}$$

 $S_w += N_{bin(Ru)} \cdot f_{w,bin}$

 $O_{Ru(matched)} = S_0 / S_w$

 N_{bin} : normalized number of entries, $f_{w,bin}$: weight factor, O_{bin} : observables S_0 and S_w are the sum of the observable and weight entries in total, respectively.

✓ The CME related backgrounds are tuned to be exactly the same with matched.

Analysis results: γ

• γ -correlator: Only the N_{POI} as the matching dimension.

> The difference in N_{POI} is removed and v_2 is still different with N_{POI} match.

Analysis results: γ

• γ -correlator: Only the N_{POI} as the matching dimension.

• SBF: N_{POI} , $v_2(observe)$ and $cos[2(\Psi_E - \Psi_W)]$ all as the matching dimensions.

≻ The difference in N_{POI} , $v_2(observe)$ and $cos[2(\Psi_E - \Psi_W)]$ are removed.

Analysis results: SBF

> Both the ratio of r_{lab} and R_B are consistent with 1 with forced match.

Summary

 \checkmark No obvious CME signal has been observed in Isobar collisions.

- RHIC Au+Au: Upcoming large data set 2023~2025, pushing measurements toward high sigma level for a decisive conclusion.
- Beam Energy Scan: Mapping the full range beam energy dependence of CME phenomenon from BES energies.

The Nobel Prize in Physics 1957

PHYSICAL REVIEW

VOLUME 104, NUMBER 1

OCTOBER 1, 1956

Question of Parity Conservation in Weak Interactions*

T. D. LEE, Columbia University, New York, New York

AND

C. N. YANG,[†] Brookhaven National Laboratory, Upton, New York (Received June 22, 1956)

The question of parity conservation in β decays and in hyperon and meson decays is examined. Possible experiments are suggested which might test parity conservation in these interactions.

□ When could the parity violation in strong interaction be confirm?

Backup: Analysis results

$$\kappa_{112} = \frac{\Delta \gamma_{112}}{v_2 \cdot \Delta \delta}$$

The ratio of $\Delta \delta < 1$ and $\kappa_{112} > 1$ with CME signal.

- > The ratio $\Delta \delta$ is larger than even after N_{POI} match.
- $\succ \kappa_{112}$ is below 1 with N_{POI} match.

Backup: SBF(2)

 $\Delta \mathbf{D}_{\mathbf{V}}$

Backup: SBF(3)

Examining the momentum ordering of charged pairs along the in- and out-of-plane directions with balance function

A. Tang, Chinese Physics C Vol. 44, No. 5 (2020) 054101 <u>Y. Lin, Nuclear Physics A 1005 (2021) 121828</u>