Collectivity: Prospects and Future Directions

Jiangyong Jia

Oct 21, 2024

 $208P_b$

23811

[Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics](https://indico.cern.ch/event/1430136/)

 $129Xe$

 $96Zr$

 ϵ_{\odot}

Heavy ion collisions

Three pillars of understanding: Properties, Dynamics, Initial condition

Heavy ion collisions

Two snap-shots: Final state particles, Nuclear structures

Two snap-shots: Final state particles, Nuclear structures \rightarrow Measure more observables or collide more systems

A plethora of observables

■ Single particle distribution Flow vector:

$$
\frac{d^2N}{d\phi dp_{\rm T}} = N(p_{\rm T}) \left[1 + 2 \sum_{n} v_{\rm n}(p_{\rm T}) \cos n(\phi - \Psi_n(p_{\rm T})) \right]
$$
\n
$$
= N(p_{\rm T}) \left[\sum_{n = -\infty}^{\infty} V_{\rm n}(p_{\rm T}) e^{in\phi} \right]
$$
\nRealial flow

\nAnisotropic flow

Two-particle correlation function

$$
\left\langle \frac{d^2N_1}{d\phi dp_{\rm T}} \frac{d^2N_2}{d\phi dp_{\rm T}} \right\rangle \quad \ \ \rhd \quad \ \langle \bm{V}_n(p_{T1}) \bm{V}^*_n(p_{T2}) \rangle \quad \ n-n=0
$$

Multi-particle correlation function

$$
\left\langle [p_\mathrm{T}]^k \frac{d^2N_1}{d\phi dp_\mathrm{T}} \ldots \frac{d^2N_m}{d\phi dp_\mathrm{T}} \right\rangle \Rightarrow \left\langle [p_\mathrm{T}]^k \boldsymbol{V}_{n_1} \boldsymbol{V}_{n_2} \ldots \boldsymbol{V}_{n_m} \right\rangle \\ p([p_\mathrm{T}], \boldsymbol{V}_2, \boldsymbol{V}_3 \ldots) = \frac{1}{N_\mathrm{evts}} \frac{\stackrel{}{\smash{\big\downarrow}}}{d [p_\mathrm{T}] d \boldsymbol{V}_2 d \boldsymbol{V}_3 \ldots}
$$

EbyE fluctuations of initial volume, size and shape

E-by-E flow amplitude distribution $p(v_n)$

Event-plane correlation $p(\Psi_n, \Psi_m, \Psi_k)$

 v_n amplitude correlation $p(v_n,v_m)$

illed Symbol

 $\sqrt{s_{_{\rm NN}}}$ (GeV)

30,409

20-30%

Open Symbols ALICE Pb+Pb

From Weiyao Ke, Jetscape

Uncertainty quantification

- Extraction of QGP properties is limited by the initial condition
- At this moment, more observables do not necessarily improve the situation.

PRL.126.24230

Isolating the impact of initial condition

Initial condition & pre-equlibrium

What is the nature of quantum fluctuations? How is the energy deposited? What are the DoFs? How does the system hydrodynamize/thermalize? timescales?

Isolating the impact of initial condition

$$
\tau=0^-_{\boldsymbol{\tau}}={0^+}^{\boldsymbol{\tau}}=0^{+-}
$$

Constraints from small system scan

What is the nature of quantum fluctuations? How is the energy deposited?

What are the DoFs?

How does the system hydrodynamize/thermalize? timescales?

Three experimental approaches:

- **Explore nuclear structure**
- Longitudinal correlation
- Small system scan

1) Constraints from nuclear structure $\frac{9}{9}$

Image U shape via Isobar-like U+U vs Au+Au collisions 2401.06625, accepted by Nature $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{\text{Aut+Au}}$ > Insensitive to final state parameters $\langle v_2^2 \rangle_{\mathrm{U}}$ $\langle \langle v_2^2 \rangle_{\mathrm{Au}}$ 0.2 < p_r < 3 GeV/c
 $\left(\sqrt{2}\right)^2$ $^{2}_{2}$ δρ $^{+}$ $< v_2^2 >$ $\frac{e}{e}$ $< (\delta p_T)^2 >$ $\langle v_{2}^{2}\delta\rho_{T}^{}\rangle_{U}^{}$ ${}^2\delta p_T$ > °° $<$ $V₂$ 1.5 $\frac{1}{2}$ 2subevent method $0.2 < p_{r} < 3$ GeV/c A_{u+Au} Centrality [%] $\overline{40}$ $\overline{20}$ $\overline{20}$ $\overline{40}$ $\overline{20}$ Centrality [%] Centrality [%] Centrality [%]

U deformation dominates the ultra-central collisions \rightarrow 50%-70% modification on <v₂²> and <(δ p_T)²>, 300% for <v₂² δ p_T>

Image U shape via Isobar-like U+U vs Au+Au collisions 2401.06625, accepted by Nature $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{\text{Aut-Au}}$ > Insensitive to final state parameters $R_{\nu_{\hat{a}}} = \langle v_2^2 \rangle_U / \langle v_2^2 \rangle_{\text{Au}}$ $\begin{aligned} \mathcal{L} = \langle (\delta \mathsf{p}_{\mathsf{T}})^2 \rangle_{\mathsf{U}} \mathcal{N} (\delta \mathsf{p}_{\mathsf{T}})^2 \rangle_{\mathsf{A}\mathsf{U}} \\ &\quad \vdots \\ \hline \end{aligned}$ $0.2 < p_{\text{r}} < 3 \text{ GeV/c}$ $\langle \textbf{op} \rangle$ STAR data hydro $\beta_{\text{out}} = 0.28$ $\langle v_\text{z}^\text{z} \delta \hat{\mathsf{p}}_\text{y}^\text{z} \rangle_\text{uu}$ hydro $\beta_{20} = 0.25$ $\beta_{2,U} = 0.28$ $\gamma_U = 0$ $\mathsf{R}_{\left(\mathrm{op}^{\vphantom{F}}_{\mathcal{F}}\right)^2}$ $-\gamma = 0$ \rightarrow 10 $-\gamma = 15$ $-\gamma = 20^\circ$ $\overline{20}$ $\overline{20}$ $\overline{20}$ 40 40 0

Reasonable agreement with IPGlasma+Music+UrQMD hydro model 2005.14682

Centrality [%]

Constraints from $\langle \delta p_T^2 \rangle$ and v₂-p_T :

Centrality [%]

Centrality [%]

Image Xe shape via Xe+Xe vs Pb+Pb collisions

2409.19064

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

• Insensitive to parameters in the final state

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}}
$$

Structure influences everywhere

Nuclear structure is inherently part of Heavy ion problem

Talk by Chunjian Zhang **Wednesday**

• Deviation from one reflects differences in nuclear structure

Isobar ratio constraints on the initial condition

 c_n relates nuclear structure and initial condition

2) Longitudinal structure

- Sensitive to stopping and entropy production mechanism
- Varying the timescales $\tau \sim e^{-\Delta \eta}$
- Short-range structure sensitive to hydrodynamization (also non-flow)

Phys. Rev. C 94 (2016) 4, 044907

Phys. Rev. C 90 (2014) 034905

Long-range sees geometry, short-range sees microscopic origin of collectivity

Traditional observables are insufficient, e.g. $r_2(\eta)_{\eta_{\rm ref}} = \frac{\langle V_2(-\eta)V_2^*(\eta_{\rm ref})\rangle}{\langle V_2(\eta)V_2^*(\eta_{\rm ref})\rangle} = \frac{R(-\eta,\eta_{\rm ref})}{R(\eta,\eta_{\rm ref})}$ Decorrelation is non-linear!!We want: $R(\eta_1, \eta_2) = \frac{\langle V_2(\eta_1)V_2^*(\eta_2) \rangle}{\sqrt{\langle V_2(\eta_1)V_2^*(\eta_1) \rangle \langle V_2(\eta_2)V_2^*(\eta_2) \rangle}}$

How to deal with non-flow?

Deformation-assisted study of longitudinal structure

Deformation-assisted study of longitudinal structure

Sources of longitudinal fluctuations

Expectation from string picture

2408.15006

Many sources with different structures

- Geometry from ϵ_F and ϵ_B : long-range
- Local hot spots: short- to medium- range
- Initial momentum anisotropy: short-range?
- Non-flow: short-range

Sources of longitudinal fluctuations

Three ways of calculating elliptic flow:

2PC method: $V_{2\Delta}(\eta_1,\eta_2) = \langle V_2(\eta_1)V_2^*(\eta_2) \rangle$

Projection flow to eccentricities:

$$
v_{2,\varepsilon}(\eta) \equiv \frac{\langle V_2(\eta)\mathcal{E}_2^* \rangle}{\sqrt{\langle \mathcal{E}_2 \mathcal{E}_2^* \rangle}} , v_{2,\varepsilon_{\text{quark}}}(\eta) \equiv \frac{\langle V_2(\eta)\mathcal{E}_{2,\text{quark}}^* \rangle}{\sqrt{\langle \mathcal{E}_{2,\text{quark}} \mathcal{E}_{2,\text{quark}}^* \rangle}}
$$

Long-range only Long- & short-range

- 1. Convolute to get contributions to 2PC $V_{2\Delta,\varepsilon}(\Delta\eta)=\frac{1}{4}\int_{-2}^{2}v_{2,\varepsilon}(\eta_1)v_{2,\varepsilon}(\eta_2)\delta(\eta_1-\eta_2)d\eta_1d\eta_2$
- 2. Decomposition:

 V_{24} = long + medium + non-flow

Observables for long-range collectivity

- \blacksquare nth-order long-range correlations are azimuthal flow harmonics v_n .
	- Most studies of collectivity use this, in particular small system.
- 0th-order long-range correlation is energy/multiplicity
	- Such correlation comes from boost invariance of initial condition. Does not require final state effects
- \blacksquare 1st-order long-range correlation is <p_T> or radial flow.

20

3) Small system scan

Why small systems

■ Need to consider full energy-momentum tensor $T_{\mu\nu}(\tau = 0)$ for the initial condition

■ Interplay of different sources holds key to hydrodynamization and its timescales

Disentangle sources of collectivities

Identifying the geometry response via geometry scan

- Non-flow
- Geometry response Nucleon vs subnucleon Local hotspots Hydro vs transport
- Initial momentum anisotropy

Quantify the fraction of each component

Small system scan

Examine QGP's short-range structures

non-flow, geometry response, local hotspot Decorrelation should be different from large systems

Compare symmetric vs asymmetric systems e.g. d+Au vs O+O

constrain the role of subnucleon fluctuations

Strategic scan from small to medium systems.

Design isobar collisions with drastically different geometry

Future

Large acceptance detector and flexible collision species

Summary

Precision understanding of QGP properties, its initial condition, and dynamics. Requires all possible experimental handles.

- Exploration of the full 3D structure →ALICE 3, ATLAS/CMS/LHCb
- Design collision species with different geometries: shape, size, and skins
- Scan from small to medium species.
	- \rightarrow Enable by LHC and SMOG2

Nuclear structure via v_2 -ratio and v_3 -ratio

 $R_{\mathcal{O}} = \frac{O_{\text{Ru}}}{O_{Zr}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$

Simultaneously constrain four structure parameters

- \blacksquare β_{2Ru} ~ 0.16 increase v_2 , no influence on v_3 ratio
- \blacksquare β_{3Zr} ~ 0.2 decrease v_2 and v_3 ratio
- \triangle a₀ = -0.06 fm increase v₂ mid-central,
- **Radius** $\Delta R_0 = 0.07$ **fm slightly affects** v_2 **and** v_3 **ratio.**

Strategy for nuclear shape imaging

Compare two systems of similar size but different structure

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a \quad \text{arXiv: } 2111.15559
$$

Deviation from unity depends only on their structure differences c_1 - c_4 are function of centrality