Collectivity: Prospects and Future Directions

Jiangyong Jia

Oct 21, 2024

208Ph

23811

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics

96Zr

60

Heavy ion collisions

Three pillars of understanding: Properties, Dynamics, Initial condition

Heavy ion collisions

Two snap-shots: Final state particles, Nuclear structures

Two snap-shots: Final state particles, Nuclear structures →Measure more observables or collide more systems

A plethora of observables

• Single particle distribution Flow vector: $oldsymbol{V}_n = v_n e^{\mathrm{i}n\Psi_n}$

$$\frac{d^2 N}{d\phi dp_{\rm T}} = N(p_T) \left[1 + 2\sum_n v_{\rm n}(p_T) \cos n(\phi - \Psi_n(p_T)) \right]$$
$$= N(p_T) \left[\sum_{n=-\infty}^{\infty} V_{\rm n}(p_T) e^{in\phi} \right]$$
Radial flow Anisotropic flow

Two-particle correlation function

$$\left\langle rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} rac{d^2 N_2}{d \phi d p_{\mathrm{T}}}
ight
angle \quad igapla \ \left\langle oldsymbol{V}_n(p_{T1}) oldsymbol{V}_n^*(p_{T2})
ight
angle \ n-n=0$$

Multi-particle correlation function

$$egin{aligned} &\langle [p_{\mathrm{T}}]^k rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} \dots rac{d^2 N_m}{d \phi d p_{\mathrm{T}}}
ight
angle &\Rightarrow ig\langle [p_{\mathrm{T}}]^k oldsymbol{V}_{n_1} oldsymbol{V}_{n_2} \dots oldsymbol{V}_{n_m} ig
angle \ &p([p_{\mathrm{T}}], oldsymbol{V}_2, oldsymbol{V}_3 \dots) = rac{1}{N_{\mathrm{evts}}} rac{\psi}{d[p_{\mathrm{T}}] d oldsymbol{V}_2 d oldsymbol{V}_3 \dots} \end{aligned}$$

EbyE fluctuations of initial volume, size and shape

E-by-E flow amplitude distribution p(vn)

Event-plane correlation $p(\Psi_n, \Psi_m, \Psi_k)$

 v_n amplitude correlation $p(v_n, v_m)$

illed Symbo

 $\sqrt{s_{_{\rm NN}}}$ (GeV)

20.409

Open Symbols ALICE Pb+Pb

From Weiyao Ke, Jetscape

Uncertainty quantification

Norm. Pb-Pb 2.76 TeV	N[2.76 TeV]	[10, 20]
Norm. Au-Au 200 GeV	N[0.2 TeV]	[3, 10]
generalized mean	p	[-0.7, 0.7]
nucleon width	w	[0.5, 1.5] fm
min. dist. btw. nucleons	d_{\min}^3	$[0, 1.7^3] \mathrm{fm}^3$
multiplicity fluctuation	σ_k	[0.3, 2.0]
free-streaming time scale	$ au_R$	[0.3, 2.0] fm/c
free-streaming energy dep.	α	[-0.3, 0.3]
particlization temperature	$T_{\rm sw}$	[0.135, 0.165] GeV

PRL.126.24230

temperature of (η/s) kink	$ T_{\eta} $	[0.13, 0.3] GeV
(η/s) at kink	$(\eta/s)_{\rm kink}$	[0.01, 0.2]
low temp. slope of (η/s)	$a_{\rm low}$	[-2, 1] GeV ⁻¹
high temp. slope of (η/s)	$a_{\rm high}$	[-1, 2] GeV ⁻¹
shear relaxation time factor	b_{π}	[2, 8]
maximum of (ζ/s)	$(\zeta/s)_{\rm max}$	[0.01, 0.25]
temperature of (ζ/s) peak	T_{ζ}	[0.12, 0.3] GeV
width of (ζ/s) peak	w_{ζ}	[0.025, 0.15] GeV
asymmetry of (ζ/s) peak	λ_{ζ}	[-0.8, 0.8]

- Extraction of QGP properties is limited by the initial condition
- At this moment, more observables do not necessarily improve the situation.

Isolating the impact of initial condition

Initial condition & pre-equibrium

What is the nature of quantum fluctuations? How is the energy deposited? What are the DoFs? How does the system hydrodynamize/thermalize? timescales?

Isolating the impact of initial condition

$$au = 0^-_{\ \ au = 0^+} au = 0^{+-}$$

Constraints from small system scan

What is the nature of quantum fluctuations? How is the energy deposited? What are the DoFs?

How does the system hydrodynamize/thermalize? timescales?

Three experimental approaches:

- Explore nuclear structure
- Longitudinal correlation
- Small system scan

1) Constraints from nuclear structure

U deformation dominates the ultra-central collisions \rightarrow 50%-70% modification on $\langle v_2^2 \rangle$ and $\langle (\delta p_T)^2 \rangle$, 300% for $\langle v_2^2 \delta p_T \rangle$

Image U shape via Isobar-like U+U vs Au+Au collisions 2401.06625, accepted by Nature $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{Au+Au}$ \rightarrow Insensitive to final state parameters $R_{v_2^2} = \langle v_2^2 \rangle_U / \langle v_2^2 \rangle_{A_U}$ ${}_{2}^{2} = \langle (\delta p_{T})^{2} \rangle_{U} / \langle (\delta p_{T})^{2} \rangle_{AU}$ $0.2 < p_{_{T}} < 3 \text{ GeV/c}$ ²δρ_ STAR data hydro $\beta_{21} = 0.28$ $\langle v_2^2 \delta \hat{p}_T \rangle_{UU} \rangle$ hydro $\beta_{2U} = 0.25$ $\beta_{2,U} = 0.28$ $\gamma_{\rm U} = 0$ $\mathsf{R}_{(\delta \mathsf{p}_{\mathsf{T}})^2}$ $\gamma = 0$ $-\gamma = 10^{\circ}$ $\gamma = 15^{\circ}$ γ = 20 20 20 20 40 0 40 Centrality [%] Centrality [%] Centrality [%]

Reasonable agreement with IPGIasma+Music+UrQMD hydro model 2005.14682

Constraints from $\langle \delta p_T^2 \rangle$ and v₂-p_T: $\beta_{2U} = 0.297 \pm 0.015$ $\gamma_U = 8.5^\circ \pm 4.8^\circ$

Image Xe shape via Xe+Xe vs Pb+Pb collisions

2409.19064

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

Insensitive to parameters in the final state

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}}$$

Structure influences everywhere

Nuclear structure is inherently part of Heavy ion problem

Talk by Chunjian Zhang Wednesday

One-body $p(N_{\rm ch})$ two-body $\langle v_2^2 \rangle$. three-body $\langle V_2^2 V_4^* \rangle$ Ratio Ratic Ratic Ru/Zr Ru/Zr STAR Ru/Zr STAR Preliminary AR Preliminan $= \langle V_a^2 V_A^* \rangle$ 13 - p(N_{track}) ► (v⁴) 1 0 1.05 0.95 ³⁰⁰ N_{track}(ηl<0. 100 N_{track}(ηl<0.5) N_{track}(lηl<0.5) $(\delta p_T)^2$ $\langle v_3^2 \delta p_T
angle$ $\langle v_2^2 \delta p_T \rangle$ DT (δp_T) Ratio_ Ratio Ratic Ru/Zr Ru/Zr Ru/Zr STAR Preliminary STAR Preliminar • $\langle (\delta p_{2})^{2} \rangle / \langle p_{2} \rangle^{2}$ • $\langle v^2 \delta p \rangle$ ___(p) • $\langle (\delta p_{\downarrow})^3 \rangle / \langle p_{\downarrow} \rangle^3$ 1.004 $\langle v^2 \delta p \rangle$ 1.002 300 100 200 300 100 200 100 200 300 N_{track}(μl<0.5) 13 $N_{track}(h|<0.5)$ $N_{track}(h|<0.5)$

Deviation from one reflects differences in nuclear structure

Isobar ratio constraints on the initial condition

c_n relates nuclear structure and initial condition

2) Longitudinal structure

- Sensitive to stopping and entropy production mechanism
- Varying the timescales $\, au \sim e^{-\Delta\eta}$
- Short-range structure sensitive to hydrodynamization (also non-flow)

Phys. Rev. C 94 (2016) 4, 044907

Jiangyong Jia, Peng Huo Phys. Rev. C 90 (2014) 034905

Long-range sees geometry, short-range sees microscopic origin of collectivity Traditional observables are insufficient, e.g. $r_{2}(\eta)_{\eta_{ref}} = \frac{\langle V_{2}(-\eta)V_{2}^{*}(\eta_{ref}) \rangle}{\langle V_{2}(\eta)V_{2}^{*}(\eta_{ref}) \rangle} \equiv \frac{R(-\eta, \eta_{ref})}{R(\eta, \eta_{ref})}$ Decorrelation is non-linear!! We want: $R(\eta_{1}, \eta_{2}) = \frac{\langle V_{2}(\eta_{1})V_{2}^{*}(\eta_{2}) \rangle}{\sqrt{\langle V_{2}(\eta_{1})V_{2}^{*}(\eta_{1}) \rangle \langle V_{2}(\eta_{2})V_{2}^{*}(\eta_{2}) \rangle}}$

How to deal with non-flow?

Deformation-assisted study of longitudinal structure

Deformation-assisted study of longitudinal structure

Sources of longitudinal fluctuations

Expectation from string picture

2408.15006

Many sources with different structures

- Geometry from ϵ_F and ϵ_B : long-range
- Local hot spots: short- to medium- range
- Initial momentum anisotropy: short-range?
- Non-flow: short-range

Sources of longitudinal fluctuations

Three ways of calculating elliptic flow:

2PC method: $V_{2\Delta}(\eta_1,\eta_2) = \langle V_2(\eta_1)V_2^*(\eta_2) \rangle$

Projection flow to eccentricities:

$$v_{2,\varepsilon}(\eta) \equiv \frac{\langle V_2(\eta)\mathcal{E}_2^* \rangle}{\sqrt{\langle \mathcal{E}_2 \mathcal{E}_2^* \rangle}} , \ v_{2,\varepsilon_{\text{quark}}}(\eta) \equiv \frac{\langle V_2(\eta)\mathcal{E}_{2,\text{quark}}^* \rangle}{\sqrt{\langle \mathcal{E}_{2,\text{quark}} \mathcal{E}_{2,\text{quark}}^* \rangle}}$$

Long-range only Long- & short-range

- 1. Convolute to get contributions to 2PC $V_{2\Delta,\varepsilon}(\Delta\eta) = \frac{1}{4} \int_{-2}^{2} v_{2,\varepsilon}(\eta_1) v_{2,\varepsilon}(\eta_2) \delta(\eta_1 - \eta_2) d\eta_1 d\eta_2$
- 2. Decomposition:

 $V_{2\Delta} = long + medium + non-flow$

Observables for long-range collectivity

- nth-order long-range correlations are azimuthal flow harmonics v_n.
 - Most studies of collectivity use this, in particular small system.
- 0th-order long-range correlation is energy/multiplicity
 - Such correlation comes from boost invariance of initial condition. Does not require final state effects
- 1st-order long-range correlation is $< p_T >$ or radial flow.

20

3) Small system scan

Why small systems

• Need to consider full energy-momentum tensor $T_{\mu\nu}(\tau = 0)$ for the initial condition

• Interplay of different sources holds key to hydrodynamization and its timescales

Disentangle sources of collectivities

Identifying the geometry response via geometry scan

- Non-flow
- Geometry response Nucleon vs subnucleon Local hotspots Hydro vs transport
- Initial momentum anisotropy

Quantify the fraction of each component

Small system scan

Examine QGP's short-range structures

non-flow, geometry response, local hotspot Decorrelation should be different from large systems

Compare symmetric vs asymmetric systems e.g. d+Au vs O+O

constrain the role of subnucleon fluctuations

Strategic scan from small to medium systems.

Design isobar collisions with drastically different geometry

Future

Large acceptance detector and flexible collision species

Summary

Precision understanding of QGP properties, its initial condition, and dynamics. Requires all possible experimental handles.

- Exploration of the full 3D structure
 →ALICE 3, ATLAS/CMS/LHCb
- Design collision species with different geometries: shape, size, and skins
- Scan from small to medium species.
 - \rightarrow Enable by LHC and SMOG2

A	isobars	A	isobars	A	isobars	A	isobars	A	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hf
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm, Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm, Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

Nuclear structure via v₂-ratio and v₃-ratio

- $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio
- $\Delta a_0 = -0.06$ fm increase v₂ mid-central,
- Radius $\Delta R_0 = 0.07$ fm slightly affects v_2 and v_3 ratio.

Simultaneously constrain four structure parameters

Strategy for nuclear shape imaging

Compare two systems of similar size but different structure

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a \quad \text{arXiv: 2111.15559}$$

Deviation from unity depends only on their structure differences c_1 - c_4 are function of centrality