

Antonin MAIRE, for the ALICE Collaboration Monday, 21 Oct. 2024 – Perspectives in High-Energy Nucl. Phys.

https://indico.cern.ch/event/1430136/

ALICE 3 physics programme, some aspects...

A. HL-LHC calendar (timeline context)B. Physics landscape and related questionsC. Proposed ALICE 3 answers at HL-LHC:

instrumental features to meet given physics questions

2 / 21

I.1 – HL-LHC : projected timeline and calendar

II.1 – The picture : towards a heavy-ion standard model

II.₂ – **Physics incentives** : response as f(quark flavour)

g + u, d, s, c, b(t) <=>

$$u,d,s \begin{cases} \bullet \pi^{\pm} \pi^{0} K^{\pm} K_{s}^{0} \dots p \wedge \Sigma^{\pm}(uus) \Xi^{\pm}(dss), \Omega^{\pm}(sss) \dots \\ \eta(547) \omega(782) \dots K^{0}(892) \varphi(1020) \Sigma^{\pm}(1385) \wedge (1520) \Xi^{0}(1530) \\ + d t {}^{3}\text{He}^{2+} 4^{4}\text{He}^{2+} \dots \\ + {}^{3}_{\Lambda}\text{H}, {}^{4}_{\Lambda}\overline{\text{He}}^{2+} \rightarrow {}^{3}\text{He}^{2+} p \pi^{-} . \end{cases} \\ \bullet (D^{0} D^{+} D^{+} D_{s}^{+}) \dots \eta_{c} J/\psi \chi_{Ci} \psi(2S) \dots \\ \wedge_{c}^{+}(udc) \rightarrow pK^{-}\pi^{+} \text{ or } pK^{0}s \quad (c\tau \approx 60 \, \mu\text{m}) \\ \Xi_{c}^{-}(usc) \rightarrow pK^{-}\pi^{+} \text{ or } \Xi^{-}2\pi^{+} \quad (c\tau \approx 136 \, \mu\text{m}) \\ \Xi_{c}^{-0}(dsc) \rightarrow \Xi^{-}\pi^{+} \quad (c\tau \approx 45 \, \mu\text{m}) \\ \Omega_{c}^{-0}(ssc) \rightarrow \Omega^{-}\pi^{+} \quad (c\tau \approx 80 \, \mu\text{m}) \\ \Xi_{cc}^{-2+}(ucc), \dots, \Omega_{ccc}^{-2+}(ccc) \\ + c\text{-deuteron } (\Lambda_{c}n)^{+} \rightarrow dK^{-}\pi^{+}? \text{ c-triton } (n\Lambda_{c}n)^{+}? \\ \text{tetraquark } [X(3872) \rightarrow J/\psi \pi^{+} \pi^{-}], T_{cc}^{+} \\ \bullet \text{heavy-flavour } (\mu^{\pm}, e^{\pm}) \\ \bullet B^{0} B^{\pm} B^{0}{}_{s} \dots Y(1S, 2S, 3S) \dots \\ \Lambda_{b}^{-0}(udb) \rightarrow \Lambda_{c}^{+}\pi^{-} \dots \Xi_{B}^{-}(dsb), \Omega_{B}^{-}(ssb) \\ (\bullet e^{\pm} \mu^{\pm} \gamma) \\ (\bullet W^{\pm} \gamma/Z^{0}) \end{cases}$$

Antonin MAIRE (IPHC) / Perspectives in HENuclP

14**Te**\

5 / 21

II.3 – Questions in ≈ 2036 : 10 benchmark questions

01. What are the <u>thermodynamic</u> properties of the QGP at the LHC?

02. What are the hydrodynamic and transport properties of the QGP?

03. How does the QGP affect the formation of hadrons?

04. How does the QGP affect the propagation of energetic partons?

05. How does deconfinement in the QGP <u>affect</u> the QCD force ?

06. Can the QGP lead to discovery of novel QCD effects?

07. What are the limits/minimal conditions of QGP formation?

08. What is the nature of the <u>initial state</u> of heavy-ion collisions?

09. What is the nature of hadron-hadron interactions?

10. Can ALICE tackle some **BSM** physics ?

Benchmarking our Research through the years

e.g. *ALICE white paper* = Runs 1+2 outcome

Questions present in: • Introduction (where we were before /outside LHC) • Conclusion (where we are after ALICE Runs1+2)

II.3 – Questions in ≈ 2036 : answers by ALICE 3

	Questions	ALICE 3 answers (including physics interests by French community)
01	Thermodynamics	T_{e+e-} , net quantum fluctuations
02	Hydrodynamics+ transport	Diffusion coefficient for c,b, v_n (HF baryons and mesons)
03	Hadronisation	Family of multi-HF hadrons (Ξ_{CC} et al), beauty hadrons beyond B ^{0,±}
04	Energetic-parton propagation	$\overline{D}-\overline{D}$ correlations (e.g. $D^0-\overline{D}^0$) in AA, fully-tag HF jets, recoil jet techniques
05	In-medium impact on QCD force	$\eta_{C} \rightarrow baryons, J/\psi \rightarrow \mu\mu, \chi_{Cj}$
06	Novel QCD effects	Chiral Magnetic Effect (CME), Disoriented Chiral Condensate (DCC)
07	Roots of collectivity	High multiplicity (pp, pA) with low bias, light-ion "scan"
08	Initial stage	UPC γ -Pb vector mesons (J/ ψ ,), D- \overline{D} correlations in pA (e.g. D ⁰ - \overline{D}^0), CGC with FoCal
09	Hadron-hadron interaction	D ^x -D ^y pairs (x≠y), χ_{C1} (3872), T _{CC} , nuclei A≤6, hypernucl A=4, charm nuclei c-deuteron (Λ_{C} ⁺ n)
10	BSM search	$\gamma\gamma$ scattering with m < 5 GeV/c ² , axion-like particle search
ALI	CE 3 Lol, arXiv:2211.02491	7 / 21

ALICE Review Paper, arXiv:2211.04384, Outlook ALICE 3 Scoping Document Draft:10248 (LHCC)

III.1 – ALICE3 layout v1 : key features

c.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
					~			,		-	-				
۰.					Q	2		/)	Т				
					U		1		4	4					
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

$IV.1 - HL-LHC: \text{ large- to small-ion candidates, for which } \mathscr{L}$

ALICE 3 Lol, arXiv:2211.02491 Tab. 1 p.18

Quantity	рр	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	3.0×10^{32}	$1.5 imes10^{30}$	3.2×10^{29}	2.8×10^{29}	8.5×10^{28}	$5.0 imes10^{28}$	3.3×10^{28}	$1.2 imes 10^{28}$
$\langle L_{\rm AA} \rangle \; ({\rm cm}^{-2} {\rm s}^{-1})$	3.0×10^{32}	9.5×10^{29}	2.0×10^{29}	1.9×10^{29}	$5.0 imes10^{28}$	$2.3 imes10^{28}$	$1.6 imes 10^{28}$	3.3×10^{27}
$\mathscr{L}_{AA}^{month} (nb^{-1})$	5.1×10^5	$1.6 imes 10^3$	$3.4 imes 10^2$	$3.1 imes 10^2$	$8.4 imes 10^1$	$3.9 imes10^1$	$2.6 imes10^1$	5.6
$\mathscr{L}_{NN}^{month} \left(pb^{-1} \right)$	505	409	550	500	510	512	434	242
R _{max} (kHz)	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682

·	$\sqrt{s_{NN}}$ (TeV) L_{AA} (cm ⁻² s ⁻¹) \mathscr{L}^{month}_{AA} (MB nb ⁻¹) $< R_{max} > (kHz)$ Colliding bunches μ	pp (2024) ALICE 2 13,6 1x10 ³¹ ≈ 5x10 ³ nb ⁻¹ 500 ≈ 2200 ≤ 0.02	pp (2018) ALICE 1 13 $3x10^{30}$ ≈ 2 nb ⁻¹ ≈ 2200 ≤ 0.02	(Beware : <u>delivered</u> Vs inspected Vs actually " <u>recorded</u> " luminosity (skip or trigger) → for ALICE 3, delivered ≈ recorded)	Pb-Pb (2023) ALICE 2 5,36 $3,5x10^{27}$ $\approx 2.0 \text{ nb}^{-1}$ 45 ≈ 875 ≤ 0.01
---	---	--	---	---	--

bpt.web.cern.ch/statistics

(Par.1) - HL-LHC: large- to small-ions, uncertainties on \mathscr{L}

R. Alemany Fernandez, LHCP2024

(Elias Waagaard, ALICE Upgrade Week 2024-10 + See coming workshop indico.cern:lightions)

<u>Question</u> :

different species, to achieve better LHC/physics performance ?

IV.2 - Pb-Pb : why take still Pb-Pb data ?

How much smaller than $v_2(\text{charm})$ is $v_2(\text{beauty})$? Is $v_2(\text{beauty}) \neq 0$? \rightarrow Examples of accuracy for single-HF baryons (Note: some hypotheses for scale of v2 for charm, for beauty below... but important = size of σ_{tot})

Key of improvement between ALICE 2.0 (run 3), ALICE 2.1 (run 4) and ALICE 3 ? *≠* L_{int} but rather the instrument : ALICE 3 pointing resolution and AxEff

11 / 21

IV.3 – Pb-Pb but sthg else : smaller systems for *themselves*

"Root of collectivity"

1. Collect higher luminosities of small systems ... **2.** with a more suitable camera : Investigate lighter ions (Xe, Kr, Ar, O, ...) down to pp with a large acceptance in $[\eta$, (ultra) low pT] i.e. with less bias in the event activitiy estimator (multiplicity, R_T , jet veto, flattenicity, ...)

If you look only in the blue windows (*VZERO acceptance ALICE1*)... You may miss fluctuations in MPI that lead to jets...

Antonin MAIRE (IPHC) / Perspectives in HENuclP

12 / 21

IV.3 – Pb-Pb but sthg else : smaller systems as opportunities

Higher raw signal (higher luminosities wrt Pb-Pb/ less background) vs. still 3 sensitivity to collective medium ?

V.1 – Particle Identification : PID with TOF + RICH

Figure 20: Analytical calculations of the $\eta - p_T$ regions in which particles can be separated by at least 3σ for the ALICE 3 particle-identification systems embedded in a 2.0 T magnetic field. Electron/pion, pion/kaon and kaon/proton separation plots are shown from left to right.

[Note the lowest p_T boundaries ...]

Antonin MAIRE (IPHC) / Perspectives in HENuclP

14 / 21

V.2 – Particle Identif[°] : why care about the low- $p_T(\pi, K, p)$

- **<u>1</u>**. Getting $dN/dp_T dy + v_n(h^{\pm})$ down to non-relativistic p_T (e.g. $p_T < 0.05 \text{ GeV}/c \rightarrow \beta_{\pi^{\pm}} \approx 0.34$) \rightarrow change from non-relativistic (linear) to relativistic hydro. (quadratic behaviour)
- 2. Disoriented Chiral Condensate or π condensate if present at all, will be at $p_T < 1/2 \text{ m}_{\pi}$

Wikipedia: Bose-Einstein condensate

Increase of acceptance when moving from $0.6 < p_T < 1.5 \text{ GeV}/c$, in $|\eta| < 0.8$ (ALICE2) to $0.3 < p_T < 10.0 \text{ GeV}/c$, in $|\eta| < 4.0$ (ALICE3) (0.3 ?! why not lower ? \rightarrow clarify with Mesut...)

1	_	-	_	-	_		-				-	-	_	-
					_			,		-	-			
۰.				1	5			/)	Т			
				Ŀ	J		1			4				
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

009, Fig. 62 p.112 Antonin M

V.3 – Particle Identif° : ex. 3 – net quantum fluctuations

See also EMMI, arXiv:2001.08831

VI.2 – Vertexing : strangeness tracking, example in ALICE 3

VII.1 – Extra reason for ALICE 3 : (e⁺e⁻) Higgs factories

A. Conclusion 1 out of 4 (2021 ECFA roadmap) :

"Develop cost-effective detectors matching the precision physics potential of a next-decade <u>Higgs factory</u> with beyond state-of-the-art performance, optimised <u>granularity</u>, <u>resolution</u> and <u>timing</u>, and with ultimate <u>compactness</u> and minimised <u>material budgets</u>"

Courtesy J. Baudot

Conclusions

Conclusions : ALICE 3 features ...

ALICE 3 equation

Ultralight detector (0.1 - 1 % X₀ per layer)
Hypergranular tracking (spatial resolution 3-10 µm= f(layer)) → prevailing role of CMOS MAPS
extension towards (ultra) low p_T (p_T ∈ [0.05; O(10)] GeV/c)
extension towards (much) more units in η / in y (|η| < 3.5 - 4) → bridge and overlap to LHCb η coverage, with a single experiment (iTOF)
fast reading / very fine time resolution (bunch tagging for µ_{pileup} = 1)

Instrument with desired French participation

Lyon, Strasbourg, Grenoble = in ALICE 3 Outer Tracker \rightarrow CMOS design / readout electronics / mechanics

21 / 21

App. A – General layout

A.1 – ALICE 3 : default layout overview, v1 SD

Scoping document (2024-03)

ALICE 3 Lol, *CERN-LHCC-2022-009, Fig. 1* + ALICE 3 Scoping document *Fig.1* [Lolv1] update = default config.

A.2 – ALICE 3 : layout overview, v2 SD

Scoping document (2024-03)

34 / 21

Back to App. TOC

App. B - ALICE3

B.1 - ALICE3 : one particular figure of merit

Beware :

pseudo-rapidity $\eta \neq$ rapidity y, especially at low p_T (in fact, one has *always* $|y| < |\eta|...$)

 \rightarrow Looking at <u>forward η may be less forward *rapidity* physics than one could imagine naïvely</u>

A. Maire, CERN-OPEN-2021-003, Fig.36 Red lines here = examples of $\eta = 4$ with $p_T \approx 120$ MeV/c for π ,K,p

Antonin MAIRE (IPHC) / Perspectives in HENuclP

$B.2 - ALICE \ 3 : PID with (CMOS) TOF$

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15-1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	$1.3\cdot10^{11}$	$6.2\cdot 10^9$	$2.1 \cdot 10^{11}$
TID (rad) / month	$4\cdot 10^3$	$2 \cdot 10^2$	$6.6\cdot 10^3$
Material budget ($\%X_0$)	1-3	1-3	1-3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20

Table 11: TOF specifications.

<u>3 options :</u>

- MAPS with gain layer (≈ ARCADIA project)
- Low Gain Avalanche Diodes (LGAD) (CMS MTD fwd, ATLAS HGTD)
- Single Photon Avalanche Diode (SPAD) for a combined TOF+RICH reading by a single sensor

App. C – OT staves & discs

Figure 83: Sketch of the outer tracker mechanics. Modules assembled in staves structures are visible as well as services and power lines. Furthermore, the overlap of the staves can be seen.

- Barrel basis = carbon spaceframes (ITS2-like)
- Endcap basis = double-side sandwich with alternate column of modules

C.1 - OT staves & discs : layout and surfaces

ALICE₃ SD, Fig. 1, *DraftID:10248*

Zoom on [<u>Outer Tracker</u>] + [Inner tracker- Middle Tracker]

Preamble:

° ITS2 sensitive area (*i.e.* active silicon without periphery on ALPIDE) \approx 9.99 m²

° MFT sensitive area $\approx 0.37 \text{ m}^2$

 \rightarrow OT \approx <u>50 m²</u> of plain acceptance geometry in total (*i.e.* naïve discs and cylinder models)

- OT Barrel \approx 33 m²
- OT forward discs $\approx 6x(2m^2/disc \text{ plane}) = \frac{12 \text{ m}^2}{2} 8.7 \text{ m}^2 \rightarrow O[1x \text{ ITS2 or } 23x \text{ MFT}]$
- OT backward discs = same $\approx \frac{12 \text{ m}^2}{12 \text{ m}^2} 8.7 \text{ m}^2 \left(\frac{may \text{ depend on FCT requirements}}{12 \text{ m}^2}\right)$
- IT-Middle Tracker $\approx 5.95 \text{ m}^2 \longrightarrow O[\frac{1}{2} \times \text{ITS2}]$ 4-layer barrel $\approx 3.73 \text{ m}^2$
 - 2x3-disc endcaps $\approx 2,22 \text{ m}^2$

Antonin MAIRE (IPHC) / Perspectives in HENuclP

41 / 21

 $\rightarrow O[3x | TS2]$

App. D – CMOS sensor

D.1 – Background : MAPS, Monolithic Active Pixel Sensors

sens. layer \Rightarrow q-collect \Rightarrow ampli \Rightarrow analog treat \Rightarrow A-D conv \Rightarrow digital proc Hybrid pixel sensor \rightarrow sensor: +FEE

CMOS pixel sensor \rightarrow **CPS**:

Ex: sensor using TowerSemiconductor 180-nm CMOS Imaging Process

ITS2 ALPIDE – 3D and 2D views of <u>2x2</u> pixels (*Here, in the 50-µm-thick version...*)

D.2 - Background : ITS2+MFT, MAPS-based detectors for Run 3

$D_{.3} - CMOS$: vertexer and tracker specifications

Time resolution: bunch tagging, *i.e. O*(100 ns)

. Table courtesy Felix Reidt

. See also FLUKA studies of radiation loads in ALICE" by Jesus Mendez

ALICE₃ days 2024-03 indico.cern.ch/event/1372735

46 / 21

Back to App. TOC

App. E – Template for QCD+QGP phys. cases

E.1 - Observables : Layer 1 / as a func. of the collision time

E.2 - Observables : Layer 2 / as a function of *momentum*

<u>A.</u> low- $p_{\rm T}$ "collectivity" ($p_{\rm T} \leq 2-3 \text{ GeV}/c$)

≈ relativistic hydrodynamics, barely viscous **<u>B.</u>** high- $p_{\rm T}$ "collectivity" ($p_{\rm T} \ge 6-8 \text{ GeV}/c$)

 \approx in-medium energy losses for energetic particles

59/21	

E.3 – **Observables** : Layer 3 / as a function of *y* (twice)

E.4 – Observables : Layer 4 / as a function of flavours

« hadron-quark duality »

$$g + u, d, s, c, b(t) <=>$$

NB:

61 / 21

Pb-Pb $\sqrt{s} = 5.52$ TeV

baryons Vs mesons mixed flavours (s+c, s+b, ... c+b ...)

E.5 – Observables : Layer 5 / as a funct° of the collision system

E.6 - Observables : paths through the multi-layer mesh

The multi-variate and interleaved families of QCD+QGP observables :

(HL-)LHC watchword for (≥Run III) : "precision era" pushed on many fronts

i.e. fight for ($\sigma_{\text{stat}} \approx \text{negligible}$) \otimes ($\sigma_{\text{syst}} \leq 1-5\%$) as much as possible

<u>Note</u>: QCD+QGP physics is both i) a bulk physics + ii) a rare-probe physics → Nowadays, precision then implies extreme cases on both fronts ... (*i.e.* also for abundant observables)

(e.g. multi-differential, multi-correlated probes, ≤ 1 High-Mult. evt every [10⁶-10⁹] MB pp evts ...)

63 / 21