
OPENLAB SUMMER LECTURES 2024

AI in low-latency environments

1

Machine Learning for Trigger and DAQ

1

Thomas James, CERN

CERN openlab, CTO for AI and Edge Devices

Applied Physicist, CMS

Many thanks to Sioni Summers (CERN) for contributions from previous talks

Introduction/Recap of ML & NNs
2

Neural Networks

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

3

Fully Connected or Dense Neural Networks

• Loosely inspired by brain structure with neurons and synapses

• Neurons are real valued representations of ‘something’

• Synapses connect neurons (in one direction) with a weight

• Input neurons are your data variables

• Output neuron(s) are your predictions

• class probabilities,

• or continuous variables if performing a regression

• Hidden layers bring the performance of deep neural networks

• Intermediate layers of neurons learn a more abstract representation of the data

• More capable than ‘shallow’ networks on raw data

• Many topologies exist for different types of problems

Neural Networks

ReLUXn = gn(Wn,n−1xn−1 + bn)

4

Non-linear
activation function

Matrix of weights
Bias vector

addition

• The values of neurons in a layer is given by the product of the neuron values of the previous layer and
the matrix of weights, with an added ‘bias’, and a non-linear ‘activation function’ applied

• Without the activation function, we’re just doing linear transformations of our variables

• Values of weights and biases learned from data during training

• Minimise loss function to get the best performing network

• Predictions as close to true labels as possible

• Update the (initially not very good) network parameters by evaluating the derivative of the loss
function w.r.t those parameters, and iterate!

• Supervised learning - start with a NN of randomised weights and a collection of training data

• Evaluate performance network with a loss function, e.g. mean squared error:

Training with Gradient Descent

5

wj = wj − lr∂
L

∂wj
L(y, ̂y) =

1
m

m

∑
i=1

(yi − ̂yi)2

PredictionTruthLoss Learning rateWeights

Tools / Frameworks

6

• Many excellent software tools and frameworks are out there for building ML models, training
and deploying them

• There are particularly good sets of tools in Python

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

from sklearn.model_selection import train_test_split

import uproot

X, y, = uproot.open(‘data.root’).arrays([…])

X_train, X_test, y_train, y_test = train_test_split(X, y)

inputs = Input(shape=(3,))

hidden = Dense(64, activation=‘relu’, input_shape=2, name=‘hidden’))(inputs)

output = Dense(1, activation=‘sigmoid’, name=‘output’))(hidden)

nn = Model(inputs=inputs, outputs=output)

nn.compile(optimizer=“Adam”, loss=“binary_crossentropy”, metrics=[“accuracy”])

nn.fit(X_train, y_train, batch_size=100, epochs=10)

nn.save(‘nn.h5’)

Minimal example - tensorflow NN

7

• Convolutional Neural Networks for images: apply convolutional filters - small neural networks - scanning over the pixels

• Reduces the number of parameters compared to feeding the pixels into a Fully Connected NN

• Adds translational invariance: the object in the image could be anywhere, and is filtered down by the convolutions

Convolutional Neural Networks

8

towardsdatascience.com [8]

http://towardsdatascience.com

• Built in memory

• Used for ordered data, e.g. time series, natural language processing

• Few different flavours: Long Short Term Memory (LSTM), Gate Recurrent Unit (GRU)

Recurrent Neural Networks

Image: colah’s blog

9

• The LSTM cell has an internal state, and fully connected neural networks update this at each
iteration

• Could be used, e.g. to predict the next word in a sentence

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Sequence-to-sequence type problems

• The big Natural Language Processing (NLP) models like GPT

• Billions of parameters

• Unlike RNNs the full sequence enters at once - more paralellizable

• Attention mechanism - learning relationships / context

• Also relevant in HEP - Particle Transformer (ParT) (jet tagging)

• Better than CNN & RNN at long-distance connections

Transformers

eidosmedia.com [9]
10

https://arxiv.org/pdf/2202.03772.pdf
http://eidosmedia.com

• Well suited to problems described by graphs of
vertices and edges

• Cluster / classify data not only according to its
coordinates, but its neighbourhood

• Iteratively update (strengthen/weaken) connections
with fully connected or convolutional networks

• Used in, e.g., molecule synthesis for drug discovery
• Promising in HEP for multi-clusters in ‘point cloud’ like

detectors (sparse images)
• tracking, calorimetry in high pileup
• hierarchical type problems, e.g. tracking, jets

Graph Neural Networks

11

• ML algorithms highly parallelisable

• NN forward pass just matrix-vector products and non-linear functions on vectors

• Can be accelerated with appropriate hardware:

• CPUs with vector/SIMD units (e.g. AVX - get packages from Intel, for example)

• GPU, FPGA, TPU (T = Tensor), IPU (I = Intelligence)

• Need also good software and compilers to utilise hardware effectively

• Need to (re)optimize ML models for online performance

• Tuning the learning rate, optimizer, loss function, activation function

• Tune network architecture

• Type of network, N layers, N neurons / layer

• Hyperparameter scan / optimization - e.g. Keras Tuner, Ray Tune

ML for TDAQ Overview

12

Fast ML at LHC
13

Big data at the LHC

14

• LHC produces vast amounts of data, billions of collisions
per second during operation

• Without selection would generate ~ Pb/s raw data
for CMS & ATLAS

• Impossible to readout/process/store all data

• Need fast trigger to select interesting collisions
for analysis with high efficiency, low fake rate

• Particles of interest rare among background

• e.g Higgs produced ~1 in a billion collisions

• Two layered selection:

• Hardware-level: Fixed latency of ~μs -> FPGAs required

• Software-level: Flexible latency ~100 ms compute / event -> CPUs/GPUs

A3D3

https://a3d3.ai/about.html

• Machine learning being exploited across particle physics

• ML allows us to speed up data processing by training
networks on much more complex algorithms than
implementable within latency constraints

• High-Luminosity LHC upgrade from ~2029 -> ~5x increase in luminosity

• Fast ML at the edge needed for reducing and filtering data in real-time;
train offline, predict online

•

AI inference at the edge

High
Luminosity

upgrade
15

ML with GPUs
16

GPUs for ML

17

• GPUs are very powerful for machine learning

‣ Many more parallel arithmetic ops than a CPU

‣ Very high memory bandwidth

‣ Training / predicting ML models on large datasets doesn’t involve much branching/control

‣ Plus the GPU can be useful for other things

• Usually, using GPUs for ML, you don’t write CUDA code yourself but use a higher level
framework like Tensorflow (or higher still with Keras, PyTorch)

‣ Extremely easy to execute on a GPU with these environments

‣ Exception might be when doing something extremely custom

• Biggest gains in training, but also beat CPUs in inference

‣ But remember you have to get the data to the device

• Batching: a common technique for better hardware utilisation

• Relevant both at training and inference time

• Send several data samples to the GPU in one batch

• Maximise use of memory bandwidth and compute

• Is the constraint latency or throughput?

• If strictly latency: low batch size

• If throughput: high batch size

• Both: batch size where throughput saturates

GPUs for ML - batching

arXiv:1803.09492

Puget Systems

18

• mlperf.org has nice benchmarking of different
hardware (not only GPUs) running on different
models

https://arxiv.org/pdf/1803.09492.pdf
https://www.pugetsystems.com/labs/hpc/GPU-Memory-Size-and-Deep-Learning-Performance-batch-size-12GB-vs-32GB----1080Ti-vs-Titan-V-vs-GV100-1146/
http://mlperf.org

• Many GPUs support Int8, float16, bfloat16
precision with many more OPS than float32

• Post Training Quantization (PTQ) -
train with FP32 then scale & round to
lower precision

• Quantization Aware Training (QAT) -
train with lower precision

• TensorRT (NVIDIA GPU),

• TensorFlow Lite (Google),

• torch.quantization (PyTorch)

• Choice of precision depends on target
hardware and requirements

Quantization

Float 32 (Titan V)

Float 16 (Titan V)

19

In
fe

re
nc

e
La

te
nc

y
[m

s]

Throughput [fps]

Inception V2

• NN often contains many redundant connections
• Pruning: remove some connections from final model
• Can reduce model size (memory footprint)
• Some processors can skip/accelerate multiply by zero calc.

• Methods:
• Regularisation (penalise low value weights, then make them 0)
• Target sparsity,
• Structured pruning - remove continuous blocks of weights
• Filter pruning - entire filters of CNN

• Applies also to BDTs (λ, ⍺ in xgboost)
• Can be coupled with Quantisation Aware Training

Pruning / Sparsity

NVIDIA Ampere

20

Tensorflow
blog [3]

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

ML inference with FPGAs
21

• Field Programmable Gate Arrays = reprogrammable integrated circuits

• Contain many different building blocks (resources) which are connected together as desired

• Extremely parallel processors

• Computing in space as well as time

• Utilised by most low level HEP triggers

What are FPGAs?

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

LUTs - generic logic
DSPs - for multiplication
BRAM - for local, high-throughput storage 22

23

FPGAs at the LHC
Most commonly: Stream processor / real-time :
data acquisition, trigger, control

Accelerators
• Primarily use custom hardware

• Very high IO bandwidth / optical inputs

• Often custom board for each task
• More often commercial

hardware

• Mostly PCIe form-factor

Micron: SB852

AMD: Alveo U250CMS/UK: Serenity

CMS/US: APOLLO

CMS/UK: MP7

Form factor: VME -> MTCA -> ATCA / PCIx -> PCIe

ATLAS: Felix

Source
A

Source
B HTP HT A HT B KF +

DR A
KF +
DR B Sink

data flow

MCH AMC
13

Algorithms running on FPGAS
• LHC Run 2 (2015-2018)

• Clustering

• Pattern Recognition

• Energy Sums

• Zero Suppression

• Boosted Decision Trees

24

• LHC Run 4 dev. 2029-

• Hough Transform

• Convolutional Neural Networks

• ?????

• LHC Run 3 (2022-2025)

• Multi Layer Perceptrons: DNNs

• Kalman Filters

• GPUs are very powerful for machine learning

• Many more parallel arithmetic ops than a CPU

• Very high memory bandwidth

FPGAs for ML

25

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

LUTs - generic logic
DSPs - for multiplication
BRAM - for local, high-throughput storage

GPUs

• However FPGAs are also highly suited to ML tasks

• massive parallelism, high memory bandwidth

• Outperform GPUs at maintaining high-throughput &
low latency with (often) best ‘performance per Watt’

• Deterministic latency - requirement for low-level trigger

• Not possible with GPUs/CPUs

• FPGA programming requires expert engineering knowledge,
long development cycles - you are describing a circuit

• Newer design tools from the FPGA companies - HLS

• You describe algorithm, compiler decides circuit

• Enables more physicists to contribute & accelerates
development timelines

• Allows us to bring more of the offline algorithms into the L1
trigger

• e.g Kalman Filter, Particle Flow, etc

• Machine Learning…

High Level Synthesis entity add is
port(
 clk : in std_logic;
 a : in signed(31 downto 0);
 b : in signed(31 downto 0);
 c : out signed(31 downto 0)
)
end add;

architecture rtl of add is
 if rising_edge(clk) then
 c <= a + b;
 end if;
end rtl;

int add (int a, int b){
 return a + b;
}

26

HLS

VHDL

//Use registers
#pragma HLS array_partition variable=a,b,c complete
//Execute loop iterations in parallel
#pragma HLS unroll

Still need to be mindful of design & use #pragma

27

• Open-source Python API & command line tool that
translates trained NNs to synthesizable FPGA firmware

Model conversion, optimisation,
profiling & tuning

Xilinx (AMD) FPGAs, Intel
FPGAs & CPUs

Quantisation and pruning:
QKeras, AutoQ (Keras)
Brevitas (PyTorch)

https://fastmachinelearning.org/hls4ml

• Can tune latency vs resource utilisation with per-layer ‘reuse factor’

• Weights stored on-chip -> very fast access times, limited capacity

• Excels at very low latency applications: planned to be widely used at High-Lumi LHC

HLS4ML

https://fastmachinelearning.org/hls4ml

28

• Open-source Python API & command line tool that
translates trained NNs to synthesizable FPGA firmware

Model conversion, optimisation,
profiling & tuning

Xilinx (AMD) FPGAs, Intel
FPGAs & CPUs

Quantisation and pruning:
QKeras, AutoQ (Keras)
Brevitas (PyTorch)

• Implementations of common ingredients - layer types, activation functions

• Novel ingredients for fast, efficient inference - binary/ternary NNs, heterogeneous quantisation

https://fastmachinelearning.org/hls4ml

HLS4ML

https://fastmachinelearning.org/hls4ml

29

• Caveats:

• Relies on Xilinx HLS (tool that produces FPGA code from C++), blackbox that can
produce non-optimal results

• Requires a bit more knowledge of FPGA design than some other solutions, but still
accessible to non-Verilog/VHDL experts

• Work on support for new backends & off-chip weights ongoing

• Ideal for L1-trigger applications: expected to be widely used for CMS Phase II trigger

https://fastmachinelearning.org/hls4ml

• Many algorithms in development for CMS at the HL-LHC

• Improving object reconstruction

• Improving event selection of difficult signatures

HLS4ML

https://fastmachinelearning.org/hls4ml

• Tools like hls4ml and conifer bring ML into FPGAs with sub-
microsecond latency

• Conifer library maps BDT onto FPGA logic

• Example: identifying fake tracks from CMS Level 1 Track Finder
(Phase 2 Upgrade)

• Fake tracks are identified in simulation as those not associated to
a simulated particle

• Often from combinatorics (200 pileup scenario), they harm
trigger performance later

• A BDT with 60 trees and depth of 3 finds fakes better than
simple cuts

• In this case 33 ns latency and < 1% resources of a VU9P

Conifer

30

https://fastmachinelearning.org/hls4ml/
https://github.com/thesps/conifer

• Like to avoid floating point in FPGAs - much more
resources & latency than fixed point

• Post-training quantisation - represent the float
values with some fixed point

• Better to use quantisation aware training (QAT)

Quantization

31

arXiv:2103.13630

• Heterogeneous quantisation useful:

• Regression -> higher precision output
layers

• Auto encoder -> higher precision
bottleneck layers

• When DSPs limiting resource can try
binary / ternary quantisation• AutoQ tool for training NNs with hardware-cost

constraints [6]

https://arxiv.org/pdf/2103.13630.pdf

Representing Quantized NNs

32

• Lots of tools like Tensorflow, PyTorch, TensorRT have support for low precision
(including QAT)

• But they are typically restricted to common CPU/GPU types (float16, int8, int4, int1)

• For dataflow (layer unrolled) FPGA inference, we would like more flexibility

• Collab w/ Xilinx Research Labs: HLS4ML team develop QONNX [7]

• Extend QONNX with Quant node

• Flexible number of bits, zero-point, and per-channel scale factors

• onnxruntime execution thanks to FINN (Xilinx RL NNs)

• QONNX is exported by Brevitas, others are working on it, and we develop a
QKeras to QONNX conversion

• github.com/fastmachinelearning/qonnx

https://github.com/fastmachinelearning/qonnx

Binary / Ternary neural networks

33

intel.com [4]

• DSP multipliers often limiting resource

• Can often go down to 1- or 2-bit weights with
limited performance loss

• Can have very efficient computation in the
FPGA (and CPU/GPU/smartphone)

• Binarize weights but not gradients during
backpropagation

• Use Binary Tanh, Ternary Tanh or ReLU
activation

• BNN: arxiv.1602.02830

• TNN: arxiv.1605.04711

http://intel.com

• DSPs often limiting FPGA resource for NNs

• Encode ‘-1’ as ‘0’

• Multiplication become XNOR, sum becomes bitcount

BNN - Dense Layer

A B A*B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A==B
0 0 1
0 1 0
1 0 0
1 1 1

A A’

-1 0

1 1

Original: 16-bit weights

Binarized: 1-bit weights

34

Xn = gn(Wn,n−1xn−1 + bn)

Xn = gn(Wn,n−1xn−1)

Activation function:
precomputed,

stored in BRAMs

Multiplication:
DSPs

Bias addition:
LUTs/FFs

Activation function:
simple binary

function

XNOR:
LUTs/FFs

Fast ML in action (i.e examples†)
35

† absolutely non-exhaustive list

Jet tagging

36

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

 top other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Z W gluon

• HLS4ml tutorial example [2]

• Tagging jets (5 classes, 16 input variables)

• 3 fully connected layers

• 16 expert-level input variables, computed with FastJet:

• known to have high discrimination power from offline data analyses and published studies

Jet tagging
• Trained (on GPU) the five output multi-classifier on a sample of ~ 1M

events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

37

energy correlation functions

• Fully connected neural network with 16 expert-level inputs:

• Relu activation function for intermediate layers

• Softmax activation function for output layer

Jet tagging

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

AUC = AREA UNDER ROC CURVE
(100% IS PERFECT, 20% IS RANDOM)

better
38

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

 top other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Z W gluon

Jet tagging w/ QAT & Pruning

Xilinx VU9P Latency DSP LUT

Keras 16b 50 ns 1890 (15%) 5%

QKeras 6b 40 ns 22 (~0%) 1%

39

A. Keras floating point training, 16b inference

B. QKeras with 6 bits for weights, biases,
activations & 75% sparsity target with TFMOT

Minimal code changes to go A to B

Better

• Design an architecture to perform the same jet classification task but now with binary weights
and activations - n neutrons 7x per layer

• Performed hyperparameter optimization to find most performant model within some
constraints

BNN - Jet Classification

Original: 16-bit weights

Average accuracy: 0.75

Binarized: 1-bit weights

Average accuracy: 0.72
40

ATLAS event filter tracking with GNNs
• ATLAS upgraded tracker & trigger for HL-LHC : O(10k) particles per 25ns bunch

crossing
• High particle density -> track reconstruction computationally intensive -> scalability

challenges
• Exploring ML/GNN solution on heterogeneous architecture CPU + GPU + FPGA
• MLP converts hits in detector -> graphs where edges are possible track segments;

edges classified by learned geometry
• GNN -> HLS4ML -> Intel S10 GX FPGA

41

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

CMS Level 1 Trigger Endcap Muon Track Finder

42

• BDT to fit the muon momentum from hits in
the muon stations

• Complicated geometry and magnetic field
makes an ML solution useful

• Deployed using a ‘large LUT’ implemented in
DDR on a mezzanine card to the FPGA

• BDT is evaluated for every possible input, with
the output written at that position in the LUT

Autoencoder ASIC for CMS upgrade
• New high granularity calorimeter, 6.5M readout channels
• ECON-T: compress data on detector with AutoEncoder,

decode off detector
• Inference on chip matches software implementation; costs 75-100mW
• Radiation tolerant (triplication), cooled to -30 ℃, 1.5μs latency
• NN architecture fixed, weights & biases re-programmable

On detector Off detector (trigger)TX

https://doi.org/10.1109/
TNS.2021.3087100 43

https://doi.org/10.1109/TNS.2021.3087100
https://doi.org/10.1109/TNS.2021.3087100

Autoencoder ASIC for CMS upgrade
• New high granularity calorimeter, 6.5M readout channels
• ECON-T: compress data on detector with AutoEncoder,

decode off detector
• Inference on chip matches software implementation;

costs 75-100mW
• Radiation tolerant (triplication), cooled to -30 ℃, 1.5μs

latency
• NN architecture fixed, weights & biases re-programmable

44

CMS L1 scouting: muon re-calibration

3.5 < pμ GMT
T < 45 GeV

0.3− 0.2− 0.1− 0 0.1 0.2 0.3
 [physical units]η ∆

0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts Micron DLA
Global Muon Trigger

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
φ ∆

0

10000

20000

30000

40000

50000

60000

70000

80000

Ev
en

ts Micron DLA
Global Muon Trigger

3.5 < pμ L1
T < 45 GeV

Δϕ ΔpT/pT
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

 #p_T/p_T∆

0

10000

20000

30000

40000

50000

60000

70000Ev
en

ts Micron DLA
Global Muon Trigger

3.5 < pμ L1
T < 45 GeV

CMS
Preliminary (2022 13.6 TeV)

CMS
Preliminary (2022 13.6 TeV)

• L1 scouting at CMS acquires subset of granular data at full bunch crossing rate

• Use ML to recover resolution / accuracy in comparison with full reconstruction

• Fully-connected DNN for muon recalibration generated w/ HLS4ML; 4 layers with 8-256 nodes

• Knowledge distillation used to obtain compression factor of ~200 with almost no performance
loss: no pruning required

• Runs on Micron SB852 (VU9P) & Xilinx VCU128 (VU37P) boards

• Improvement for all variables in comparison with raw trigger values

45

CMS L1 scouting

46

• Q6.12 precision, pruning factor 0.5

• Idea: 2 NN each process 4 muons / BX

• Latency 100 ns FIFO latency, can
accept 2 muons / clock

≲

L1 trigger board

Aligner

Zero suppression

FIFO
Filler

Gap cleaner

DMA

AXI/DMA clk
250 MHz

Link clk
250 MHzGTY input logic

HLS4ML core

VU9P (SB852) floorplan

VU37P VU9P

LUTs 57k / 4% 52k / 5%

BRAM (all infra) 584 / 29% 610 / 28%

DSP (all NN) 992 / 11% 1016 / 15%

post-implementation of full design w/ scouting fw & infrastructure

Dense
Relu

32 nodes

32

32

ϕ′ η′ p′ T

η pT q

Dense
Relu

32 nodes

Dense
Relu

32 nodes

ϕ

Knowledge distillation
• Process of transferring knowledge from large model

to smaller model i.e reducing computations while
maintaining performance

• Larger Teacher model pre-trained

• Smaller Student model trained with loss function dependent on the
output of the teacher model: A*Loss(student, teacher) + B*Loss(student, truth)

• In CMS L1 Scouting: Applied to both re-calibration & classification: both models 4 layers;
precision AP (18,5)

47

Performance
comparison N Neurons / layer N parameters total

FWHM Classification: area
under ROC curveΔ𝜑 [rad] Δη ΔpT [GeV]

Teacher 256 204 000 0.12 0.061 0.41 0.97
Student 8 419 0.12 0.063 0.42 0.96
Original
baseline 16 1219 0.14 0.066 0.43 0.97

• Compression factor of ~200 with almost no performance loss: no pruning required

https://intellabs.github.io/distiller/knowledge_distillation.html

Knowledge distillation
• Applied to both re-calibration & classification:

both models 4 layers; precision AP (18,5)

• Same model architecture for re-calibration &
classification

• 250 MHz clock

• Can easily fit multiple copies in FPGA

48

VU9P FPGA DSP Flip Flops Look Up Table BRAMS

Available 9024 2.6 M 1.3 M 2160

Used 72 (0.79%) 5677 (0.21%) 11.3 K (0.87%) 0

Si
gn

al
ef

fic
ien

cy
 [%

]

Background efficiency [%]

In
pu

t ∈
 ℝ

56

Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ56

ENCODER DECODER

• Unknown signature for new physics

• New signals may be difficult to trigger on
with standard cuts-based selection

• CICADA [1]: (Calorimeter Image
Convolutional Anomaly Detection Algorithm)

• 2D CNN autoencoder runs on the
calorimeter region energy deposit
topologies

• 18x14 pixel input; MSE loss from re-constructed image

• Implemented in calorimeter trigger: anomaly rate of a few kHz

Anomaly detection in CMS trigger

49[1] https://cds.cern.ch/record/2879816

In
pu

t ∈
 ℝ

56

Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ56

ENCODER DECODER

Anomaly detection in CMS trigger
• AXOL1TL [2]: variational auto encoder to select anomalous events in real time

• Trained on minimally biased, unfiltered data from detector, simplified KL loss

• Firmware developed with HLS4ML on FPGA-based custom global trigger board (Xilinx
Virtex-7), meets strict timing and resource limitations; 50 ns latency / inference

• Physics performance improvements in (beyond) standard model signals - could we find
something we have been missing?

50

[2] https://doi.org/10.1038/s42256-022-00441-3.

use simplified KL loss
no decoder needed

Summary

51

• Deploying ML into the realtime processing for Trigger and DAQ is becoming increasingly possible and
relevant

• FPGAs and ML crucial to processing huge throughput of the HL-LHC

• New tricks of the trade for fast ML inference with low latency: quantisation, knowledge distillation

• Many examples at LHC experiments - just a sub-set shown

• Full exploitation of ML inference at the edge is necessary to continue advancing our understanding of
the universe

• Many more ideas for what can be done up to and including at the HL-LHC

Thomas James, tom.james@cern.ch

CERN openlab, CTO for AI and Edge Devices

Applied Physicist, CMS detector

mailto:tom.james@cern.ch

[1] https://fastmachinelearning.org/hls4ml

[2] https://github.com/fastmachinelearning/hls4ml-tutorial

[3] https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

[4] https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

[5] https://arxiv.org/abs/1804.06913

[6] https://www.nature.com/articles/s42256-021-00356-5

[7] github.com/fastmachinelearning/qonnx

[8] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53

[9] https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything

Links and additional reading

52

https://fastmachinelearning.org/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
https://arxiv.org/abs/1804.06913
https://www.nature.com/articles/s42256-021-00356-5
http://github.com/fastmachinelearning/qonnx
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything

• Common FastML

• MLCommons recently added ‘Tiny’ category to MLPerf benchmark (link)

• hls4ml submission targeted pynq-z2

• Fully on-chip hls4ml implementation is efficient for low power inference

BACKUP: Fast ML benchmarking

Benchmark CIFAR-10 ToyADMOS

Team Device Accuracy Latency (ms) Power (W)* AUC Latency (ms) Power (W)*

hls4ml Pynq-z2 77% 7.9 ~ 1.5 0.82 0.096 ~ 1.5

Latent AI Raspberry Pi
4 85% 1.07 ~ 4 - 5 0.85 0.17 ~ 4 - 5

Harvard Nucleo-
L4R5ZI 85% 704 0.85 10.4

Peng Cheng
Lab

PCL
Scepu02 85% 1239.16 0.85 13.65

53

https://mlcommons.org/en/inference-tiny-07/

• There are some processors out there specifically designed for Machine Learning / AI

• e.g. Tensor Processing Unit (TPU) from Google, Intelligence Processing Unit (IPU) from Graphcore

• Devices aiming at low power embedded

• Internet of Things, Smartphones

• Xilinx Versal ACAP for FPGAs with embedded Vector units, Vector/NN units in CPUs

• Many different things out there, each targeting a specific optimisation:

• Best overall throughput

• Lowest latency

• Lowest power / smallest footprint

• Choose appropriate device for your task

BACKUP: ML Specific Processors

A3D3

54

https://a3d3.ai/about.html

• Tools like hls4ml (more later) and conifer bring ML into FPGAs with sub-microsecond latency

• Example: identifying fake tracks from CMS Level 1 Track Finder (Phase 2 Upgrade)

• Fake tracks are identified in simulation as those not associated to a simulated particle

• Often from combinatorics (200 pileup scenario), they harm trigger performance later

• A BDT with 60 trees and depth of 3 finds fakes better than simple cuts

• conifer library maps BDT onto FPGA logic

• In this case 33 ns latency and < 1% resources (VU9P)

• Many algorithms in development for Phase 2

• Improving object reconstruction (as here)

• Improving event selection of difficult signatures

ML in L1T FPGAs

55

https://fastmachinelearning.org/hls4ml/
https://github.com/thesps/conifer

• Common FastML

• MLCommons recently added ‘Tiny’ category to MLPerf benchmark (link)

• hls4ml submission targeted pynq-z2

• Fully on-chip hls4ml implementation is efficient for low power inference

Fast ML benchmarking

Benchmark CIFAR-10 ToyADMOS

Team Device Accuracy Latency (ms) Power (W)* AUC Latency (ms) Power (W)*

hls4ml Pynq-z2 77% 7.9 ~ 1.5 0.82 0.096 ~ 1.5

Latent AI Raspberry Pi
4 85% 1.07 ~ 4 - 5 0.85 0.17 ~ 4 - 5

Harvard Nucleo-
L4R5ZI 85% 704 0.85 10.4

Peng Cheng
Lab

PCL
Scepu02 85% 1239.16 0.85 13.65

56

https://mlcommons.org/en/inference-tiny-07/

• Neural Net encoder IP block created for ECON-T ASIC with Catapult HLS (Mentor/Siemens) and
hls4ml (more later)

• NN architecture is fixed, weights can be reprogrammed (e.g. after NN retraining)

• ECON-T also includes non-ML baseline compression algorithms

• Decoder block would run in trigger FPGAs

• Device manufactured and undergoing testing

ECON-T ASIC for CMS HGCal

57

• Stream processor / accelerator hybrid

• What does L1 accept miss?

• Can we acquire L1 trigger data at full bunch crossing rate

• subset of detector information, limited resolution

• Allows for analysis of certain topologies at full rate

• semi real-time analysis and/or

• storing of tiny event record

• Demonstrated for first time at end of 2018

• Upgraded w/ new boards in 2021 - validated with LHC test beams

• For LHC Run 3 (2022) - prompt & displaced muons, jets, electrons/photons, taus and global
trigger outputs included

58

L1 Scouting

CMS L1 scouting: muon re-calibration

› Target: centred on zero & higher peak

› NN shows improvement for all variables in comparison to raw trigger values

3.5 < pμ GMT
T < 45 GeV

0.3− 0.2− 0.1− 0 0.1 0.2 0.3
 [physical units]η ∆

0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts Micron DLA
Global Muon Trigger

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
φ ∆

0

10000

20000

30000

40000

50000

60000

70000

80000

Ev
en

ts Micron DLA
Global Muon Trigger

3.5 < pμ L1
T < 45 GeV

Δη Δϕ ΔpT/pT
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

 #p_T/p_T∆

0

10000

20000

30000

40000

50000

60000

70000Ev
en

ts Micron DLA
Global Muon Trigger

3.5 < pμ L1
T < 45 GeV

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4
η ∆

0

20

40

60

80

100

120

140

310×

Ev
en

ts Micron DLA
Global Muon Trigger

3.5 < pμ L1
T < 45 GeV

CMS
Preliminary (2022 13.6 TeV)

CMS
Preliminary (2022 13.6 TeV)

CMS
Preliminary (2022 13.6 TeV)

› L1 scouting at CMS acquires subset of granular data at full bunch crossing rate - what
does L1 accept miss?

› Use ML to recover resolution / accuracy in comparison with full reconstruction

› Δη, Δ𝜑, ΔpT is the difference between the prediction (or GMT) values, and the offline
reconstructed global muon tracks for matched muons (ΔR<0.1 at 2nd muon station)

https://cds.cern.ch/record/2843741/files/DP2022_066.pdf

59

CMS L1 scouting:
muon re-calibration

• Integrated NN for muon recalibration generated w/ HLS4ML

• Runs on Micron SB852 & Xilinx VCU128 boards

• Q6.12 precision, pruning factor 0.5

• 2 NN each process 4 muons / BX

• Latency 100 ns FIFO latency, can accept 2 muons / clock≲

Dense
Relu

32 nodes

32 nodes

32 nodes

ϕ′ η′ p′ T

ϕ η pT q

Dense
Relu

32 nodes

Dense
Relu

32 nodes

60

L1 dimuon classifier
› Acts on muon pairs: rejects misconstructed pairs of L1 muons not found in offline reco i.e L1 duplicates

› Trained/tested with 2022 data - 305k pairs (identical pre-removed)

› Huge gains in purity for small efficiency cost

Dense
BN
Relu

Dense
BN
Relu

Dense
BN

Sigmoid

Dense
BN
Relu

28 nodes

12 nodes

20 nodes

1 nodes

ϕ η pT q

Class

Qual

ϕ η pT qQual

CMS
Preliminary (2022 13.6 TeV)

Si
gn

al
ef

fic
ien

cy
 [%

]

Background efficiency [%]Signal efficiency

Pu
rit

y

CMS
Preliminary (2022 13.6 TeV)

AUCAUC

https://cds.cern.ch/record/2843741/files/DP2022_066.pdf 61

L1 Scouting with SB-852
• Micron SB-852 for optical input ->

DMA to PC

• Perform NN inference with Micron
DLA after firmware ZS

 Dell ServerSB-852 (VU9P)

SW Zero
Suppression

1/8PCIe Gen 3
~800 MB/s

User logic/
Firmware Zero
Suppression

1/208 x 10 Gb/s
optical links

L1
 tr

ig
ge

r b
oa

rd
s

10 G Eth.
~100 MB/s

10/40G Eth
switch

Supports up to
200GB/s IO over

QSFPs

Pico framework

M
D

LA

62

Why ML for L1 scouting?

ϕ′ reco η′ reco p′ T reco

Dense
BN
Relu

Dense
BN
Relu

Dense
BN
Relu

• Use of classical (FF-DNN) neural networks to ‘recalibrate’ L1
information to improve their utility for an online analysis

• Inputs - L1 objects e.g GMT muons:

• Target - Offline fully reconstructed objects

Dense
BN
Relu

ϕ η pT Q q (quality)

128 nodes

128 nodes

128 nodes

128 nodes

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
φ∆

0

2000

4000

6000

8000

Ev
en

ts Global Muon Trigger
Neural Network

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

T
 / p

T
 p∆

0

1500

3000

4500

6000

Ev
en

ts Global Muon Trigger
Neural Network

CMS Preliminary (2017/2018 13 TeV) CMS Preliminary (2017/2018 13 TeV)
3 < pμ GMT

T < 45 GeV3 < pμ GMT
T < 45 GeV

Particle angular position perpendicular to beam Particle momentum in direction transverse to beam 63

Muon recalibration on SB-852
N DLA clusters Inference rate Average latency / muon

inference

4 cluster 5.6 MHz 171 ns

2 cluster 2.8 MHz 342 ns

1 cluster 1.4 MHz 683 ns

ϕ η pT

ϕ′ reco η′ reco p′ T reco

Dense
BN
Relu

Dense
BN
Relu

Dense
BN
Relu

Q

Dense
BN
Relu

q

• 4 clusters maximum in VU9P FPGA

• Majority of latency from data/weights transfer RAM/FPGA,
batching implemented to remove this bottleneck (batch size 1280)

(quality)

128 nodes

128 nodes

128 nodes

128 nodes

Precision |hw - Keras sw| Frac. < 1% diff

Model w/ integer inputs, no batch norm 99%
64

Fake muon pair classifier
• Network consists of 8 recalibration branches & 4 classification branches

• Trained/tested with Run 3 Zero-bias data

Dense
BN
Relu

Dense
BN
Relu

Dense
BN

Sigmoid

Dense
BN
Relu

28 nodes

12 nodes

20 nodes

1 nodes

ϕ η pT q

Class

Qual

ϕ η pT qQual

Recalibration Classification
65

• There are some processors out there specifically designed for Machine Learning / AI

• e.g. Tensor Processing Unit (TPU) from Google, Intelligence Processing Unit (IPU) from Graphcore

• Devices aiming at low power embedded

• Internet of Things, Smartphones

• Xilinx Versal ACAP for FPGAs with embedded Vector units, Vector/NN units in CPUs

• Many different things out there, each targeting a specific optimisation:

• Best overall throughput

• Lowest latency

• Lowest power / smallest footprint

• Choose appropriate device for your task

ML Specific Processors

A3D3

66

https://a3d3.ai/about.html

• Several BDTs involved in the analysis of Higgs boson decay to
two photons using high-level variables

• e.g. particle mass, η, isolation

• To separate signal photons from background (photons from jets)

• Choosing the most likely vertex for the photons (they are
neutral, so no tracking)

• A diphoton quality BDT (separating signal like 𝛾 𝛾 events from
background)

• Used to increase the purity of the selected diphoton dataset

• Increase in sensitivity due to ML equivalent to having 50% more
data (and no ML)

BDTs for Higgs

arXiv:1804.02716v2

67

arXiv:1804.02716v2

Neutrino Detector Reconstruction

arxiv:1611.05531

68

• From MicroBooNE, Liquid Argon time-
projection chamber (LArTPC) neutrino
experiment

• Using a CNN to identify neutrino interactions
using a CNN

• e.g. simulated neutrino interaction yielding 1 μ,
3 p, 2 π. Background from cosmic data

• Yellow box is ‘truth’ box containing all charge
deposits from simulated interactions

• Red is bounding box predicted by CNN

https://arxiv.org/abs/1611.05531

• Big successes in HEP from ML for jet ID, example: DeepJet from CMS

• 1x1 CNN layers for ‘feature engineering’ (combining variables of single particles)

• LSTM recurrent networks iterate over particles sequentially

• Finally Dense layers combine features learned from the previous steps and the
global variables

Jet Tagging

CMS-DP-2018-058
69

http://cds.cern.ch/record/2646773?ln=en

• Jet tagging is an area of HEP rich in ML: given the final state observables, what type of particle initiated
the jet?

• How to represent the jet? Lots of approaches have been tried, relating to the different NN architectures

• High-level observables reconstructed with classical means -> fed into MLP

• Make images from individual particles by applying a grid -> Convolutional NN

• Make lists of particles (often pT ordered) -> Recurrent NN or Transformer

• Represent particles as a graph (point cloud with connections) -> Graph NN

Jet Tagging

arXiv:2202.03772

70

https://arxiv.org/pdf/2202.03772.pdf

• From ATLAS, predicting the transfer time of files between sites

• One metric in determining the network-aware scheduling of GRID jobs and file storage

• Uses a Long Short Term Memory (LSTM)

• Inputs: source, destination, activity, bytes, start timestamp, and end timestamp

ML For Networking

doi :10.1088/1742-6596/898/6/062009
71

• Biggest gains for GPUs are seen in training, but they also outcompute CPUs in inference

• But remember you have to get the data to the device

• Here, running inference on K80 GPUs, measuring images / second (throughput)

• mlperf.org has nice benchmarking of different hardware (not only GPUs) running on different
models

GPUs for ML

From Microsoft Azure

72

http://mlperf.org
https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/

• “Batching” is a common technique for better hardware utilisation

• Relevant both at training and inference time

• Send several data samples to the GPU in one batch to maximise use
of memory bandwidth and compute

• Is the constraint latency or throughput?

• If strictly latency: low batch size

• If throughput: high batch size

• Both: batch size where throughput saturates

GPUs for ML - batching
arXiv:1803.09492

• Plot: throughput vs latency at different batch sizes for
Inception V2 (large computer vision CNN)

• On different GPUs and different precisions

Puget Systems 73

https://arxiv.org/pdf/1803.09492.pdf
https://www.pugetsystems.com/labs/hpc/GPU-Memory-Size-and-Deep-Learning-Performance-batch-size-12GB-vs-32GB----1080Ti-vs-Titan-V-vs-GV100-1146/

• Whether or not you can profit from batching depends also on:

• Is the main constraint on throughput or latency? (Or both?)

• The data source: do data arrive at fixed intervals (bottom right image), or stochastically
(bottom left)?

• Can you afford to wait to accumulate several samples before sending them to the GPU?

GPUs for ML - batching

NVIDIA

74

https://developer.nvidia.com/blog/nvidia-mlperf-v05-ai-inference/

• Many GPUs support Int8, float16, bfloat16
precision with many more OPS than float32

• Post Training Quantization (PTQ) -
train with FP32 then scale & round to
lower precision

• Quantization Aware Training (QAT) -
train with lower precision

• TensorRT (NVIDIA GPU),

• TensorFlow Lite (Google),

• torch.quantization (PyTorch)

• Choice of precision depends on target
hardware and requirements

Quantization

Float 32 (Titan V)

Float 16 (Titan V)

75

In
fe

re
nc

e
La

te
nc

y
[m

s]

Throughput [fps]

Inception V2

• A Neural Network often contains many redundant connections
• Pruning = remove some connections from final model
• Can reduce the model size (memory footprint)
• Some processors can accelerate sparse networks

• Basically - don’t do the multiply by 0 computations
• Different methods:

• Regularisation (penalise low value weights, then make them 0)
• Target sparsity, e.g. sparsity ramp up with TFMOT
• Structured pruning - remove continuous blocks of weights;
• Filter pruning - entire filters of CNN

• Applies also to BDTs (λ, ⍺ in xgboost)
• Can be coupled with Quantisation Aware Training

Pruning / Sparsity

NVIDIA Ampere

76

Tensorflow
blog [3]

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

LHCb, Bonsai BDT
• In LHCb, Bonsai BDT has been used since the

beginning of LHC data taking in their online
software event selection

• Bonsai BDT is a technique to compress BDTs
into a binned parameter space for faster
execution

• Was used in the main selection path for most
LHCb analyses

77

• Using an Autoencoder for anomaly detection

• Network has a ‘bottleneck’ that learns an abstract representation of the data

• After bottleneck, decoder network tries to reproduce the input image

• For anomalous input, the recreated image is not similar to the original input, and flagged

• Applied to CMS muon drift tube system, able to identify failures not spotted by previous, rule
based system

Data Quality Monitoring

78

arXiv:1808.00911

https://arxiv.org/abs/1808.00911

