

Simulation and data

We use data with 2 jets only!

Jet flavor tagging is done jet based, not event based

~ 3800 jets per flavor

 FastSim on IDEA detector for E=240 GeV

Tagging done successfully

FullSim on CLD detector for E=240
 GeV (generated by Brieuc)

Tagging \rightarrow my task now!

/eos/experiment/fcc/prod/fcc/ee/test_spring20
24/240gev/H*/CLD_o2_v05/rec/*/*/H*_rec_*.root

The idea of the project

- Extracting descriptions of jet properties and properties of their constituents (e.g. jet momentum, momentum of jet constituents, d0, z0...)
- 2. Comparison of FullSim parameters to FastSim parameters
- 3. Extraction of additional information from FullSim (secondary vertices, V0...)
- 4. Retraining the ParticleTransformer (neural network) on FullSim data
- 5. Evaluating the performance
- 6. Improving the neural network?
- 7. Implementation of tagger into edm4hep

The idea of the project

today's topic

- Extracting descriptions of jet properties and properties of their constituents (e.g. jet momentum, momentum of jet constituents, d0, z0...)
- 2. Comparison of FullSim parameters to FastSim parameters
- 3. Extraction of additional information from FullSim (secondary vertices, V0...)
- 4. Retraining the ParticleTransformer (neural network) on FullSim data
- 5. Evaluating the performance
- 6. Improving the neural network?
- 7. Implementation of tagger into edm4hep

Full vs. FastSim observables

- extraction of the the same jet (constituent) properties in FullSim as in FastSim
- 58 overservables in total
- Analyzing H(bb) events (3800 jets originating from b quarks in Full & FastSim)

- modifications made my me (compared to FastSim):
 - time of flight of jet constituents not available in CLD -> filled with 0
 - dN/dx of jet constituents not available in CLD -> filled with 0
 - SIP significance value: FastSim: -9, FullSim: -200 (placement outside of distribution)

Full vs. FastSim: jet kinematics

- more lower mass events and less higher mass events in FullSim
- similar distributions for momentum and θ
- different convention in φ (FastSim: [0, 2 π], FullSim: [- π , π])

Full vs. FastSim: jet constituents

- Separation into charged and neutral particles
- Analysis of the three leading particles (highest contribution to jet energy)

Full vs. FastSim: jet constituents - charged particles (kinematics)

- good agreement in most parameters, e.g. momentum

- different tails in $\Delta \theta$ (to be investigated)

Full vs. FastSim: jet constituents - charged particles (displacements)

- very good agreement

- expected asymmetry from H(bb) events

Full vs. FastSim: jet const. - charged particles: cov matrix

- good agreement among some parameters:

Full vs. FastSim: jet with charged particles: shift from IP (0,0,0) to PV

- we can calculate the primary vertex (PV) of jets with charged particles
- apply correction from (0,0,0) to PV for particles with tracks
- correction applied to:
 - d0 (transverse impact parameter)
 - z0 (longitudinal impact parameter)
 - φ of jet constituent
 - θ of jet constituent
- NO correction for:
 - covariance matrix
 - relative angles ($\Delta \phi$, $\Delta \theta$)
- correction to be applied in the future

Full vs. FastSim: jet constituents - neutral particles (kinematics)

- good agreement in leading particle, less accordance afterwards

- Discrepancy in $\Delta \varphi$: Where do the peaks at $\pm \pi/2$ come from?

H to uu/dd/ss/cc/bb/ $\tau\tau$ - kinematics

- comparison of all other Higgs decay channels in FullSim instead of comparison between all FullSim/FastSim pairs

- agreement between different quarks, т behaves different

H to uu/dd/ss/cc/bb/ $\tau\tau$ - charged constituents (kinematics)

- agreement between channels

H to uu/dd/ss/cc/bb/ $\tau\tau$ - charged constituents (displacements)

- very good consistency
- asymmetry in 2D SIP for b and c jets (and τ)
- larger displacement for b and c jets (and τ)
- covariance matrices all in accordance

H to uu/dd/ss/cc/bb/ $\tau\tau$ - neutral constituents (kinematics)

- good agreement in most parameters

- peaks at $\pm \pi/2$ for $\Delta \phi$; need for explanation

Summary

- overall good agreement between FastSim IDEA and FullSim CLD (tested in H(bb) channel)
- overall good agreement between different Higgs channels in FullSim
- Open tasks/questions:
 - What's happening with $\Delta \varphi$ for neutral particles in FullSim? (peaks at $\pm \pi/2$)
 - some discrepancies in covariance matrix between Full and FastSim
 - Task: Apply correction of PV shift to covariance matrix and relative angles
- Next tasks:
 - Better statistics with more FullSim CLD data
 - comparison between FastSim CLD and FullSim CLD
 - Adding more information, e.g. secondary vertices
 - Evaluation at different energy (E=365 GeV)
 - Training the neural network with large FullSim CLD dataset to compare tagger performance with FastSim

Backup slides

Full vs. FastSim: particle multiplicities in jet

Dip in 3D SIP sign. but not in 2D SIP sign.

