Pseudoentanglement

arxiv: 2211.00747 arxiv: 2311.12017

Soumik Ghosh

Joint work with...

Scott Aaronson (UT Austin)

Umesh Vazirani (UC Berkeley)

Adam Bouland (Stanford)



Chenyi Zhang (Stanford)

Bill Fefferman (UChicago)

Jack Zhou (Stanford)

Based on:

Quantum Pseudoentanglement

Scott Aaronson^{*1}, Adam Bouland^{†2}, Bill Fefferman^{‡3}, Soumik Ghosh^{§3}, Umesh Vazirani^{¶4}, Chenyi Zhang^{∥2}, and Zixin Zhou^{**2}

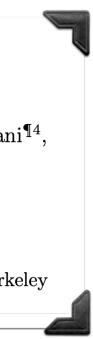
¹Department of Computer Science, University of Texas, Austin ²Department of Computer Science, Stanford University ³Department of Computer Science, University of Chicago ⁴Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

Public-key pseudoentanglement and the hardness of learning ground state entanglement structure

Adam Bouland^{*1}, Bill Fefferman^{†2}, Soumik Ghosh^{‡2}, Tony Metger^{§3}, Umesh Vazirani^{¶4}, Chenyi Zhang^{||1}, and Zixin Zhou^{**1}

> ¹Stanford University ²University of Chicago ³ETH Zurich ⁴UC Berkeley

Tony Metger (ETH)



Chapter 1: Background

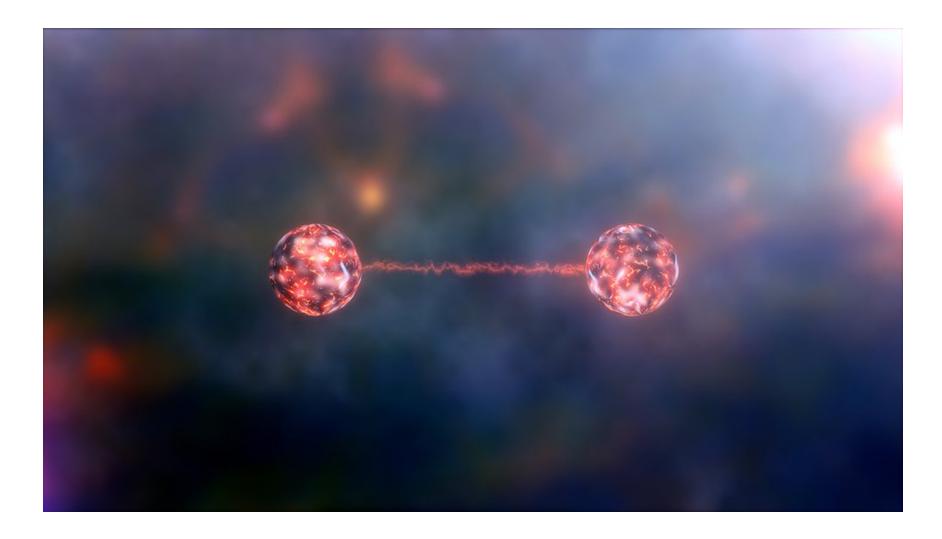
Chapter 2: Private Key Pseudoentanglement

Chapter 3: Public Key Pseudoentanglement

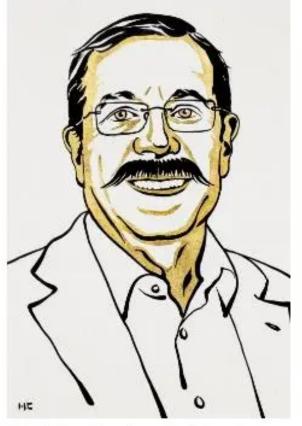
Outline

Chapter 1: Background

Entanglement is the driving force of quantum computing

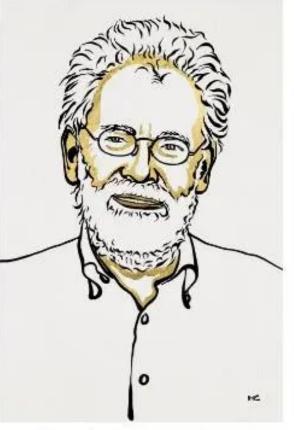


But there is a lot that we do not understand about entanglement.



III. Niklas Elmehed © Nobel Prize Outreach Alain Aspect Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach John F. Clauser Prize share: 1/3



III. Niklas Elmehed © Nobel Prize Outreach Anton Zeilinger Prize share: 1/3

This work: We will give a new property of entanglement.

Chapter 2: Private Key Pseudoentanglement

How do we measure entanglement?

We will measure entanglement using the von Neumann entanglement entropy $S(\cdot)$ across a particular bipartition.

Definition: Two collections of states $\{ |\psi_{k_1} \rangle \}$ and $\{ |\phi_{k_2} \rangle \}$ are (f(n), g(n)) – pseudoentangled if

1. Polynomial preparability: Given the key k_1 and k_2 respectively, $|\psi_{k_1}\rangle$ and $|\phi_{k_2}\rangle$ are preparable by a polynomial time quantum algorithm.

2. Indistinguishability: If the keys are secret, then with high probability then for any poly time quantum distinguisher D

 $\left| \Pr[\mathbf{D}(|\psi_{k_1}\rangle^{\otimes \operatorname{poly}(n)}) = 1] - \right|$

3. Entanglement gap: $|\psi_{k_1}\rangle$ has entanglement entropy $\Theta(f(n))$ and $|\phi_{k_2}\rangle$ has entanglement $\Theta(g(n))$ across a fixed publicly known bipartition, with f(n) > g(n).

$$-\Pr[\mathbf{D}(|\phi_{k_2}\rangle^{\otimes \operatorname{poly}(n)}) = 1] = \operatorname{negl}(n).$$

 These are an ensemble of states such that no efficient algorithm can distinguish, with non-negligible advantage, poly(n) copies of the state from this ensemble from poly(n) copies of a Haar random state.

• These usually require complexity theoretic conjectures.

Our construction of pseudoentanglement will rely on computationally pseudorandom states...

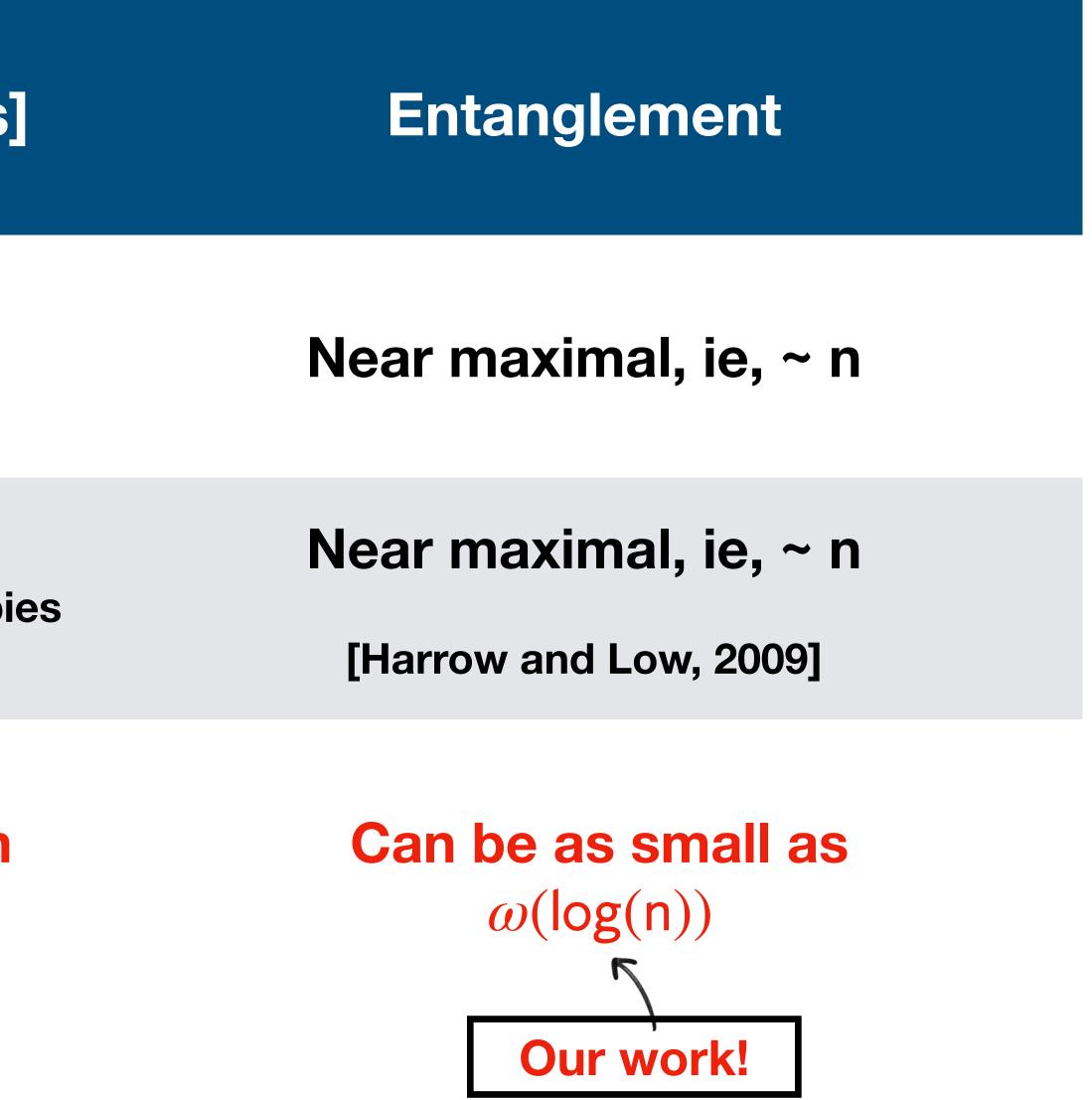
How much entanglement spoofs the Haar measure?

State ensemble [n qubit states]

Haar random

t-designs [t copies are info-theoretically close to t copies of Haar random states]

Computationally pseudorandom



To start with, consider the following ensemble..

 $|\psi_{f_k}\rangle = \frac{1}{\sqrt{2^n}} \sqrt{2^n} x \epsilon$

Divvy up the state into two registers:

 $|\psi_{f_k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{i,j\in\{k\}} \sum_{k=1}^{n} |\psi_{f_k}\rangle$

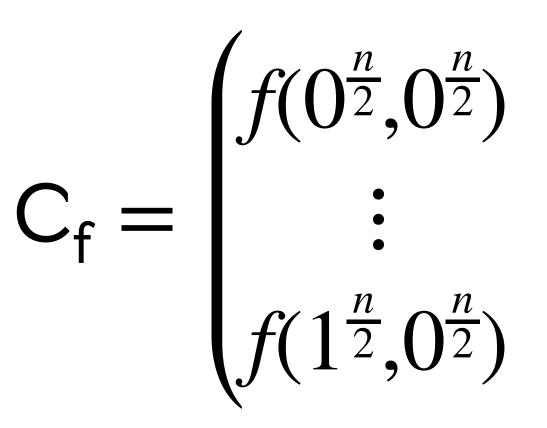
$$\sum_{x \in \{0,1\}^n} (-1)^{f_k(x)} |x\rangle.$$

any quantum secure pseudorandom function

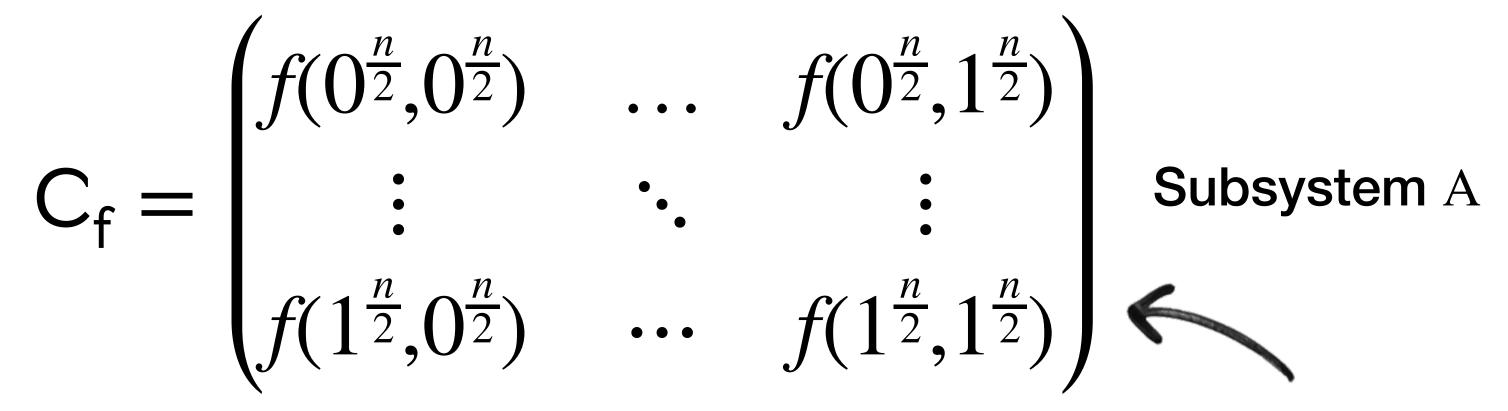
$$\sum_{\{0,1\}^{n/2}} (-1)^{f_k(i,j)} |i_A\rangle |j_B\rangle.$$

For ease of presentation, define a pseudorandom matrix

Subsystem B



$$\rho_{\mathsf{A}} =$$

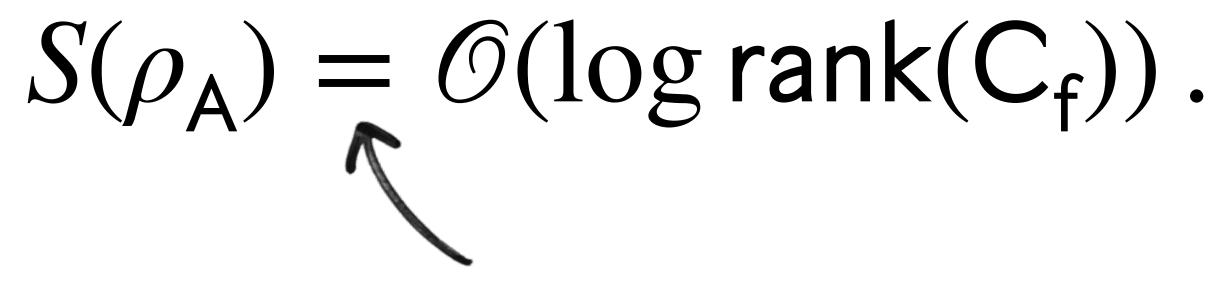


has a one to one correspondence with the pseudorandom state

The reduced density matrix across subsystem A, given by ρ_A is

$$\frac{1}{2^n} \mathbf{C}_{\mathbf{f}} \cdot \mathbf{C}_{\mathbf{f}}^{\mathsf{T}}.$$

Note that the entanglement entropy is....



How to reduce the entanglement entropy?

Reduce the rank of $C_{f}!$ But do it in a quantum-secure way.

By Jensen's inequality

We can get a maximal entanglement difference of $\Omega(n)$ versus $\mathcal{O}(\operatorname{polylog}(n))$ across one cut.

Remarks

Another construction also gives pseudoentanglement across multiple cuts, using subset phase states!

Pseudoentanglement."

See Adam Bouland's Simons colloquium on "Quantum

Applications and other constructions

• Time-complexity lower bounds on problems that are as hard as entanglement testing, like spectrum testing, Schmidt rank testing, testing matrix product states etc.

• Time complexity lower bounds on entanglement distillation.

 Check out LOCC-based pseudoentanglement [Arnon-Friedman, Brakerski, Vidick '23]. Nice generalization to operational mixed state measures!

Chapter 3: Public Key Pseudoentanglement

Observation

Remember that for our private-key constructions, the distinguisher only got to see many copies of the unknown (low or high entanglement) state.

state!

• The distinguisher did not know the circuit that prepared the

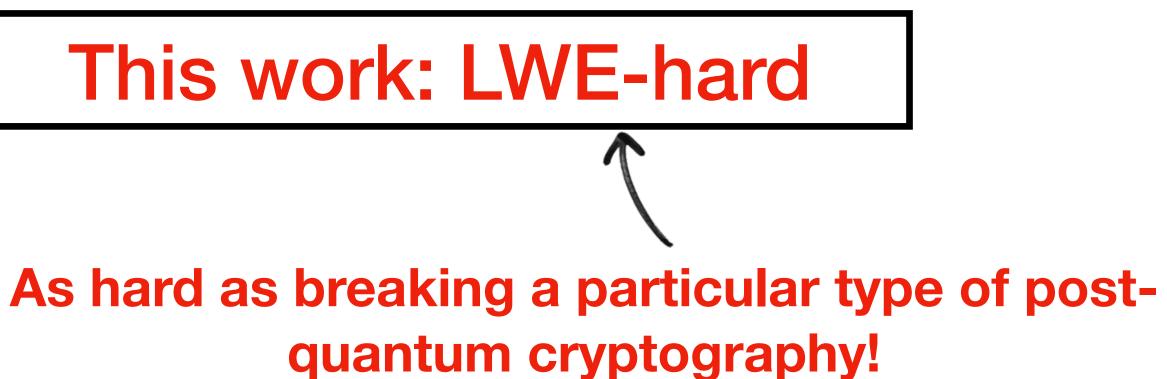
Can we construct pseudoentangled states even when the circuit is revealed?

Yes! Using LWE: a post-quantum cryptography variant

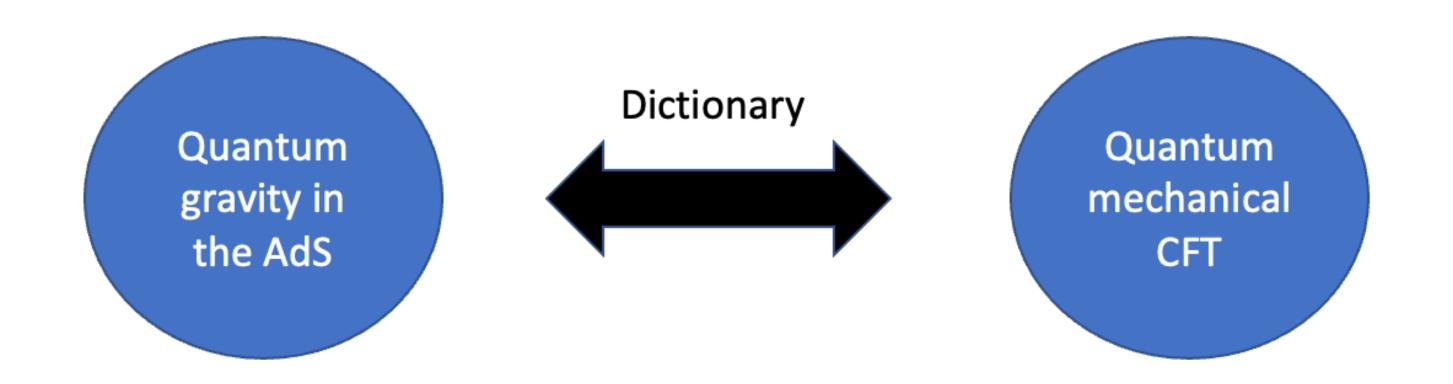
Application

Ground State Entanglement Structure

- Given a Hamiltonian H, decide if....
- The ground state $|\psi\rangle$ has low or high entanglement...



Entanglement, Geometry, and Complexity



- Major theme: Geometry in AdS = Entanglement in the CFT (eg: Ryu-Takayanagi formula)
- Our result: Entanglement cannot be felt/efficiently measured
- Are corresponding geometries feelable? If so, then the AdS/CFT dictionary must be hard to compute!

Open problems

• Other constructions!

- For subset state based constructions, check out [Tudor Giurgica-Tiron, Bouland' 23] [Geronimo, Magrafta, Wu' 23] [Fermi Ma, unpublished].
- Can we have geometrically local Hamiltonians with large spectral gap for which ground states are pseudoentangled?
- Can we find pseudoentangled states compatible with holography?

Thank you!