
Pseudoentanglement
Soumik Ghosh

arxiv: 2211.00747 arxiv: 2311.12017



Joint work with…

Adam Bouland 
(Stanford)

Bill Fefferman 
(UChicago)

Tony Metger 
(ETH)

Umesh Vazirani 
(UC Berkeley)

Jack Zhou 
(Stanford)

Chenyi Zhang 
(Stanford)

Scott Aaronson 
(UT Austin)

Based on: 



Chapter 1: Background

Chapter 2: Private Key Pseudoentanglement

Chapter 3: Public Key Pseudoentanglement

Outline



Chapter 1: Background



Entanglement is the driving force of quantum 
computing

But there is a lot that we do not understand about entanglement.

This work: We will give a new property of entanglement.



Chapter 2: Private Key Pseudoentanglement



How do we measure entanglement?

We will measure entanglement using the von Neumann 
entanglement entropy  across a particular 

bipartition.
S( ⋅ )



Definition: Two collections of states  and  are 
— pseudoentangled if   

{ |ψk1
⟩} { |ϕk2

⟩}
( f(n), g(n))

 Polynomial preparability: Given the key and  respectively,  and  are preparable by 
a polynomial time quantum algorithm. 
1. k1 k2 |ψk1

⟩ |ϕk2
⟩

 Indistinguishability: If the keys are secret, then with high probability then for any poly time 
quantum distinguisher 
2.

𝖣

Pr[D( |ψk1
⟩⊗poly(n)) = 1] − Pr[D( |ϕk2

⟩⊗poly(n)) = 1] = negl(n) .

  Entanglement gap:  has entanglement entropy  and  has entanglement  
across a fixed publicly known bipartition, with . 
3. |ψk1

⟩ Θ( f(n)) |ϕk2
⟩ Θ(g(n))

f(n) > g(n)



• These are an ensemble of states such that no efficient algorithm can 
distinguish, with non-negligible advantage,  copies of the state 
from this ensemble from  copies of a Haar random state.

𝗉𝗈𝗅𝗒(𝗇)
𝗉𝗈𝗅𝗒(𝗇)

• These usually require complexity theoretic conjectures.

Our construction of pseudoentanglement will rely on 
computationally pseudorandom states…



State ensemble [n qubit states] Entanglement

Haar random Near maximal, ie, ~ n

t-designs 
[t copies are info-theoretically close to t copies 

of Haar random states]

Near maximal, ie, ~ n 

[Harrow and Low, 2009]

Computationally pseudorandom   Can be as small as 
ω(𝗅𝗈𝗀(𝗇))

Our work!

How much entanglement spoofs the Haar measure?



To start with, consider the following ensemble..

|ψfk⟩ =
1

2n ∑
x∈{0,1}n

(−1) fk(x) |x⟩ .

any quantum secure 
pseudorandom function

Divvy up the state into two registers:

|ψfk⟩ =
1

2n ∑
i,j∈{0,1}n/2

(−1) fk(i,j) | iA⟩ | jB⟩ .



For ease of presentation, define a pseudorandom matrix

𝖢𝖿 =
f(0n

2,0n
2) … f(0n

2,1n
2)

⋮ ⋱ ⋮
f(1n

2,0n
2) ⋯ f(1n

2,1n
2)

has a one to one 
correspondence with the 

pseudorandom state 

The reduced density matrix across subsystem , given by  is A ρ𝖠

Subsystem B

Subsystem A

ρ𝖠 =
1
2n

𝖢𝖿 ⋅ 𝖢𝖳
𝖿 .



Note that the entanglement entropy is….

S(ρ𝖠) = 𝒪(log 𝗋𝖺𝗇𝗄(𝖢𝖿)) .

By Jensen’s inequality

How to reduce the entanglement entropy?

Reduce the rank of ! But do it in a quantum-secure way.𝖢𝖿



We can get a maximal entanglement difference of 
 versus  across one cut.Ω(n) 𝒪(𝗉𝗈𝗅𝗒𝗅𝗈𝗀(𝗇))



Remarks

Another construction also gives pseudoentanglement across 
multiple cuts, using subset phase states!  

• See Adam Bouland’s Simons colloquium on “Quantum 
Pseudoentanglement.” 



Applications and other constructions

• Time-complexity lower bounds on problems that are as hard as 
entanglement testing, like spectrum testing, Schmidt rank testing, 
testing matrix product states etc.

• Time complexity lower bounds on entanglement distillation.

• Check out LOCC-based pseudoentanglement [Arnon-Friedman, 
Brakerski, Vidick ’23]. Nice generalization to operational mixed state 
measures!



Chapter 3: Public Key Pseudoentanglement



Observation
Remember that for our private-key constructions, the distinguisher 
only got to see many copies of the unknown (low or high 
entanglement) state. 

• The distinguisher did not know the circuit that prepared the 
state!

Can we construct pseudoentangled states even when the 
circuit is revealed?



Yes! Using LWE: a post-quantum cryptography 
variant



Application

The ground state  has low or high entanglement…|ψ⟩

Ground State Entanglement Structure

This work: LWE-hard

As hard as breaking a particular type of post-
quantum cryptography!

Given a Hamiltonian , decide if….H



Entanglement, Geometry, and Complexity

Major theme: Geometry in AdS = Entanglement in the CFT  
(eg: Ryu-Takayanagi formula)

Our result: Entanglement cannot be felt/efficiently measured.

Are corresponding geometries feelable? If so, then the AdS/CFT dictionary 
must be hard to compute!



Open problems

• Other constructions!

• For subset state based constructions, check out  
[Tudor Giurgica-Tiron, Bouland’ 23] [Geronimo, Magrafta, Wu’ 
23] [Fermi Ma, unpublished].

• Can we have geometrically local Hamiltonians with large spectral gap 
 for which ground states are pseudoentangled?

• Can we find pseudoentangled states compatible with holography?



Thank you!


