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The first “Quantum advantage” claims have 
now been made…

Random Circuit Sampling 
(Google “Sycamore” in 

2019, 2023)

Gaussian BosonSampling 
(USTC, Xanadu in 
2021,2022,2023)

This talk: these are all “random quantum circuit” experiments.  
Why should any of these be hard to simulate classically?

IQP sampling with logical qubits 
made from Rydberg atoms 

(Harvard/QuEra 2023)

Random Circuit Sampling 
with trapped ions 

(Quantinuum “H2-1” in 
2024)



What is Random Circuit Sampling? [Boixo et. 
al. 2017]
• Generate a quantum circuit C on 𝑛 qubits on a 2D 

lattice, with 𝑑 layers of (Haar) random nearest-
neighbor gates
• In practice use a discrete approximation to the Haar 

random distribution
• Start with |0n〉 input state, apply random quantum 

circuit and measure all qubits in computational 
basis
• i.e., Sample from a distribution 𝐷!  over 0,1 "

• Has now been implemented e.g.,: 
• n = 53 qubits, d = 20 [Google, 2019]
• n = 60 qubits, d = 24 [USTC, 2021] 
• n = 70 qubits, d = 24 [Google, 2023]

(single layer of Haar random two 
qubit gates applied on 2D grid of 
qubits)



Question 1: Why should this sampling 
problem be so hard for classical computers?
• Not at all obvious!  Previous quantum algorithms (e.g., Shor, Grover) 

use very structured quantum circuits to achieve speedup
• Formally: goal is to prove impossibility of an efficient “classical 

sampler” algorithm that solves the same problem as quantum 
experiment:
• takes as input a quantum circuit C
• outputs a sample from 𝐷!  with high probability over C



Our work gives evidence for classical hardness 
of random quantum circuits
• There are a few very special “worst-case” 

quantum circuits that are known to be hard to 
simulate classically
• e.g., think of Shor’s quantum circuit for factoring
• But these circuits are very unlikely to be chosen at 

random!
• Our results [BFNV‘19][BFLL’21] establish a 

“worst-to-average-case” reduction!
• i.e., suppose it’s easy to classically simulate 

(compute output probability) of most quantum 
circuits, then we can use this ability to simulate 
the worst-case circuit classically too

• This is a contradiction, since the worst-case 
circuit is hard!

• So there can’t exist a classical algorithm that 
simulates random quantum circuits (with high 
probability)!

easy quantum circuits

“worst-case” 
quantum circuit

quantum circuits



Question 2: How hard are noisy random 
circuits?
• Noise is overwhelming in near-term 

experiments
• e.g., Google’s 2019 experiment: ~0.2% 

signal, 99.8% noise!
• How to theoretically model this?  First, 

consider just single qubit depolarizing – 
i.e., each layer random gates followed 
by:
• ℰ 𝜌 = 1 − 𝛾 𝜌 + "#

$
𝑇𝑟[𝜌]

• Where the noise strength, 𝛾 is positive 
constant

• This is a popular model, but 
oversimplified!



Depolarizing noise and complexity
• Intuitively, uncorrected depolarizing noise increases entropy.  As the 

circuit gets deeper the output distribution converges to uniform
• First question: how close are the output distribution of noisy (i.e., 

depolarizing) random circuit and uniform distribution?
• 2%&(() close in TVD [Aharonov et. al. ’96][Deshpande et. al.’22]

• This rules out scalable noisy quantum advantage at super-logarithmic 
depth
• [Aharonov et. al. ’22] give a classical algorithm for sampling from the 

output distribution of noisy, log(𝑛) depth random quantum circuits



Can we extend the [Aharonov et. al. ’22] algorithm 
to other noise models?
• Analysis of [Aharonov et. al. ’22] relies on “anti-concentration” 

property
• i.e., Output distribution of random circuit is “uniform-ish” or well-spread over 

outcomes
• Anti-concentration is a property of sufficiently deep noisy random quantum 

circuits as long as the noise channel is unital or entropy increasing
• What if the noise doesn’t always increase entropy?

• e.g., amplitude damping channel: 𝐾* =
1 0
0 1 − 𝛾 , 𝐾+ =

0 𝛾
0 0

• This noise can decrease entropy!
• In recent work [Ghosh et. al.’24] we show that such circuit distributions never 

anti-concentrate!
• So in such cases we know neither hardness, nor easiness!



Future directions for random quantum circuits
• Is near-term quantum advantage possible with realistic 

uncorrected noise?
• Useful applications of random quantum circuit experiments?

• We are currently working on using these experiments to certifiably produce 
random numbers, with cryptographic applications (see e.g., Aaronson & 
Hung’23)

• To make these applications work we’ll need far better ways to 
classically verify any of these sampling tasks…
• For much more complete discussion please see my Institute for 

Advanced Study/Park City lectures (on youtube, lecture notes coming 
soon…)


