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• Research topics 

• Development of simulation methods for strongly  

correlated systems 

• Novel states, phase transition phenomena, and dynamics in strongly 

correlated many-body systems 

• Quantum computation algorithms and software 

• Data science and machine learning 

• Open-source software development for next generation parallel simulations

Tensor Network and Quantum Computation



Development of Simulation Methods for Strongly  
Correlated Systems

• Hilbert space dimension 〜 exponentially increasing with system size                                         

  ⇒ Represented in a form that facilitates simulation without losing 

important physical properties 

• Randomized algorithms - classical and quantum Monte Carlo sampling 

• Representation of quantum fluctuations by imaginary-time path 

integrals 

• Detailed balance-breaking Markov chain Monte Carlo, event chain 

Monte Carlo, order-N methods for long-range interacting systems 

• Negative sign problems 

  → Keisuke Murota, Sora Shiratani, Hidemaro Suwa 

• Information compression by tensor networks 

• Decompose information into networks by considering 

“entanglement" of information 

• Tensor network renormalization group method, application to 

quantum computing
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Tensor Network Representation

• Quantum state of quantum many-body systems / 

量子多体系の量子状態 

• MPS, Tree TN, MERA, PEPS → Tohru Mashiko, Tsuyoshi Okubo 

• Sampling Complexity of MPS at finite temperature 

→ Atsushi Iwaki (poster presentation) PRB 109, 224410 (2024) 

• Partition function in statistical physics / 統計力学模型の 

分配関数 

• TN renormalization / TN繰り込み群 

• Application to lattice field theories 

  → Ho Pai Kwok, Shinichiro Akiyama 

• Machine learning using TN / テンソルネットワークによる機械学習 

• Compression of neural networks/generative models / 

ニューラルネットワーク・生成モデルの圧縮 

  → collaboration with private companies 

• Compression in hierarchical structure / 階層構造の情報圧縮 

• Quantics representation / 同次多項式表現 

• TN simulation of PDE / 偏微分方程式のTNシミュレーション 

  → Rihito Sakurai

ZE-FENG GAO et al. PHYSICAL REVIEW RESEARCH 2, 023300 (2020)

FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[ jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM

023300-2

ARTICLES NATURE COMPUTATIONAL SCIENCE

correlations, it is still highly correlated in space because the fine grid 
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with 
the fluid flow to optimally capture spatially correlated structures. 
This is in contrast to classical scientific computing techniques 
(implemented through, for example, finite-difference or spectral 
methods) where the bases are structure-agnostic; that is, they are 
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of 
Fig. 2a. The TDJ comprises a central jet flow along the x direction, 
and Kelvin–Helmholtz instabilities in the boundary layer of the jet 
eventually cause it to collapse (see equations (9)–(15) for the initial 
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n) 
with (for details, see Supplementary Section 2)

Γ
�%(O) = NJO(�O
 �/−O)� 	�


Figure 1b shows the Schmidt numbers d99(n, t) such that equation 
(2) represents the DNS solutions for the velocity fields with 99% 

accuracy in the L2 norm (more details on the Schmidt coefficients 
are provided in Supplementary Section 1). We find that d99(n, t) are 
well below their maximal values Γ2D(n) for n > 1. More specifically, 
we define ȕ

��

= NBY E

��

(O
 U) as the maximal value of d99 for all n 
and time steps. We obtain χ99 = 25, and the interscale correlations 
captured by equation (2) with E(O) = NJO

(
Γ

�%(O)
 ��
)
 are shown 

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained 
within this blue area. Note that the Schmidt numbers are shown on 
a logarithmic scale in Fig. 1b, and thus the area M is much smaller 
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions 
to the TGV in 3D, where vortex stretching causes a single, large, 
ordered fluctuation to collapse into a turbulent flurry of small-scale 
structures (see the top row in Fig. 3a for visualization and equation 
(16) in the Methods for the initial flow conditions). In three spatial 
dimensions, the representation in equation (2) is exact if d(n) equals 
(Supplementary Section 2)

Γ
�%(O) = NJO (�O
 �/−O)� 	�


The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207, 
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Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up 
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right). 
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on 
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on 
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y 
coordinate. Red (blue) corresponds to positive (negative) stress.
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Quantum Embedding: from QC to TN

• Conversion from QC to TN is straightforward / 量子回路からTNへの変換は容易 

• High-performance TN simulator / 高性能なTNシミュレーター 

• Optimization of TN contraction order based on  

graph theory / グラフ理論によるTN縮約順序の最適化 

  → Sayan Mukherjee 

• Combination with MCMC sampling / MCMCサンプ 

リングとの組み合わせ → ST, Hidemaro Suwa, Sora Shiratani 

• Quantum error correction / 量子誤り訂正 

• Noise model prediction using TN decoders and Bayesian 

estimation / TNデコーダーとベイズ推定によるノイズモデル予測 

→ Takumi Kobori (arXiv:2406.08981) 

• Decomposition of multi-controlled gates / マルチコントロール 

ゲートの分解 → Ken Nakanishi (poster presentation, 

PRA 110, 012604 (2024)) 

• Conversion from “Quantum State" to TN is not straightforward / 

 「量子状態」からTNへの変換は非自明

3
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FIG. 1: Rotated surface code with d = 5. The number
of physical qubits and stabilizer generators is 25 and 24,
respectively. This figure only shows the physical qubits
but not the qubits for syndrome measurements.

encoded code states are defined by the stabilizer states,
and the code space is the Hilbert space restricted by the
stabilizers. The code states |ÂÍ and code space C are
defined as the

|ÂÍ œ C ≈∆ ’gi œ Sg, gi |ÂÍ = |ÂÍ . (4)

If the number of stabilizer generators is n≠k, the dimen-
sion of the restricted Hibert space of the stabilizer code
is 2k. Therefore, the code states can represent k logical
qubits, which encode the original k-qubit states.

To correct the error, we have to get some information
from codes. We focus on the parity change in the eigen-
values of stabilizer generators so as not to destroy the
quantum states after measurements. Such parity check
measurements are called syndrome measurements. The
syndrome measurements are executed using one ancilla
qubit for each stabilizer generator. The decoding process
of the stabilizer code is as follows:

1. Error detection: Obtain the results of the syndrome
measurement of the stabilizer generators.

2. Error estimation: Based on the results, the decod-
ing algorithm calculated by a classical computer is
used to estimate where the error occurred.

3. Error correction: Based on the estimated errors,
correct the error by operating to erase the errors or
update the Pauli frame [40].

B. Surface code

The surface code, a type of stabilizer code, is a leading
candidate for QEC in future FTQC due to its high per-
formance. One type of surface code is represented like
Fig. 1 [41]. Its stabilizer generators can be written by
only the product of X or Z. In Fig. 1, the blue area rep-
resents the product of X, and the white area represents
the product of Z. Let the lattice be L ◊ W , and its code
distance is d = min(L, W ), which means the code can
detect the d ≠ 1 errors. The number of qubits is LW to

(a)

(b)

(c)

FIG. 2: (a) TN representation of projectors
�±g = (I ± g)/2. (b) TN representation of d = 5 initial
code state |0ÍL. It can be made from |0Í¢25 by
operating the X stabilizer projectors. It is because
|0Í¢25 is already stabilized by the products of Z. (c) A
conceptual picture of the TN diagram of the likelihood
p(m|–) calculation of d = 3 surface code.

represent the code and LW ≠ 1 for ancilla qubits used in
syndrome measurements. Their stabilizer generators are
represented by the product of two or four Pauli opera-
tors, and the physical qubit on which they act is spatially
localized. Consequently, the surface code can be imple-
mented with qubits arranged in a two-dimensional grid,
where operations are performed on adjacent qubits. That
is why we can simulate them using the TN e�ciently.

C. Tensor network simulation of surface code

The TN simulation is one of the most valuable and
powerful numerical methods [42]. It is the method
for e�ciently compressing the Hilbert space of quan-
tum systems. To represent the state of quantum many-
body systems, tensors, which are multidimensional ar-
rays, are used and connected by contraction in the TN.
By using the representative class of TNs, PEPS [43] and
MPS-MPO [44], the surface code can be simulated e�-
ciently [20].

To simulate the surface code, TN representation of the
projector onto the eigenspace of ±1 eigenvalue of stabi-
lizer generators is needed. It can be written as (I ± g)/2
for each stabilizer generator g, and it is represented by the
tensors with bond dimension two as shown in Fig. 2(a).
When we label the horizontal leg indices by –, the TN
represent the product of I for – = 0, X or Z for – = 1,
and zero otherwise. All legs have bond dimension 2, so
the representation is very e�cient.

By using the projectors �±g = (I ± g)/2 for g œ Sg,

DECOMPOSITIONS OF MULTIPLE CONTROLLED-Z … PHYSICAL REVIEW A 110, 012604 (2024)
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FIG. 1. Decomposition of the CCZ gate for a square-shaped
qubit-coupling graph (third row in Table I). X a := RX (aπ ), Za :=
RZ (aπ ). The CCZ gate can be decomposed with CZ-depth 4 (defined
in Sec. II). The numbers assigned to each qubit correspond to the
qubit indices in the coupling graph in Table I. The qubit at the bottom
is used as an auxiliary qubit. Each gray zone represents a CZ stage,
in which multiple CZ gates can be executed simultaneously.

after the decomposition should be as small as possible to
reduce the noise.

To further reduce noise, it is crucial to minimize the execu-
tion time. For such a purpose, we consider the decomposition
of multiqubit operations into as short a sequence of primi-
tive gates as possible by assuming that qubit operations on
nonoverlapping sets of qubits can be executed simultaneously.
Significantly, the depth of two-qubit primitive gates, such as
the CZ depth, is an essential metric for designing efficient
decomposition [31].

Before going into the details of the methods, we present
efficient decompositions of CCZ and CCCZ gates we found
under different qubit-coupling graphs. These gates are typical
three- and four-qubit gates. Here, we assume that the CZ gate
is the only two-qubit primitive gate. Our main focus is on
reducing the CZ count and/or the CZ depth of the decom-
posed multiqubit operations. Tables I and II summarize the
decompositions of CCZ and CCCZ gates, respectively, for vari-
ous qubit-coupling graphs. The decompositions we found are
shown in Figs. 1–3.

III. SEARCH FOR DECOMPOSITIONS
OF MULTIQUBIT OPERATIONS

This section describes the overall framework for searching
for decompositions of multiqubit operations. In the following,
we denote the X (Z) gate with rotation angle θ as RX (θ )
[RZ (θ )].

A. Parametrized quantum circuit generation

We start our search by determining the following: (1) type
of two-qubit primitive gate to use, (2) QPU qubit-coupling

graph, and (3) initial two-qubit count or two-qubit depth of
the circuit.

First, we enumerate all possible sequences of two-
qubit primitive gates according to these conditions. Then,
we insert parametrized one-qubit gates, more specifically,
RZ (θ )-RX (θ ′)-RZ (θ ′′), before and after each two-qubit prim-
itive gate. [Especially when we consider the CZ gate as the
two-qubit primitive gate, we can use RZ (θ )-RX (θ ′) instead,
except at the end of the circuit. This is because the CZ and
RZ gates commute with each other, and thus, omitting either
one of the RZ gates before or after the CZ gate does not spoil
the representability of the parametrized circuit.] This way, we
generate all the possible parametrized quantum circuits under
the assumed conditions.

B. Exhaustive optimization of all prepared circuits

Next, we optimize rotation angles in the parametrized
quantum circuits we prepared. Optimization details will be
presented in Sec. IV. Since the optimization of rotation angles
may stop at some local optimum, we repeat the optimization
for each parametrized quantum circuit. The goal is achieved
if the optimization finds a parametrized quantum circuit that
matches the target quantum gate. Typically, a few optimiza-
tion trials are enough to find the solutions, though more than
one hundred trials are required for the CCCZ gates on the T-
shaped coupling graph (the second row in Table II). We found
that the CCCZ gate decomposition with 14 CZ gates can be
achieved using only four couplings between qubits (the fourth
row in Table II) instead of the fully connected graph. For the
T-shaped qubit-coupling graph, we found a decomposition of
the CCCZ gate with 16 CZ gates, which has the same CZ count
as the one obtained by Nemkov et al. [47], but a different
CZ-gate sequence. Our search for the T-shaped coupling graph
case took about 37 h using a single NVIDIA GeForce RTX
4090. A detailed analysis of the efficiency of our method and
theirs is subject to future work.

C. Further circuit simplification

Once optimal rotation angles are identified in a
parametrized quantum circuit, we simplify the circuit by
strategically reducing the number of single-qubit gates.
This is achieved through extensive optimization, performing
thousands to millions of iterations, each starting from random
initial rotation angles. The goal is to converge on the target
quantum gate configuration.

0
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FIG. 2. Decomposition of CCCZ gate for a T-shaped qubit-coupling graph (second row in Table II). X a := RX (aπ ), Za := RZ (aπ ). The
CCCZ gate requires 16 CZ gates on the T-shaped qubit-coupling graph. The CZ count is the same as the decomposition obtained by Nemkov
et al. [47], but the CZ-gate sequence is different. The numbers assigned to each qubit correspond to the qubit indices in the coupling graph in
Table II.
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Quantum Embedding: from TN to QC

• Conversion from TN to QC is not straightforward / TNから量子回路への変換は非自明 

• Matrix product state to QC / 行列積状態から量子回路 

• Quantum state preparation / 量子状態の準備 

• Generalization for Tree Tensor Network / ツリーテンソルネットワークへの一般化 

→ Shota Sugawara (poster presentation) 

• Transformation from tensor networks including loops / ループを含むテンソルネット

ワークからの変換 → Tsuyoshi Okubo 

• Embedding of real/imaginary-time evolution / 実時間・虚時間発展の埋め込み 

• Quantum Simulation by Quantum Singular Value Transformation 

  → Tokinori Oe 

• Tensor network quantum simulation on QC / QC上でのTN量子シミュレーション

Encoding of tree tensor networks into shallow quantum circuits
Shota Sugawara*・Tsuyoshi Okubo・Synge Todo（University of Tokyo）

Initialization of Quantum Circuits using 
Tensor Networks (TN)

Tree Tensor Networks(TTN)
Advantages same as MPS
• Efficient contraction using canonical form
• Scalability of computational cost

Advantages different from MPS
• Distance between any leaf nodes
• MPS : !(#)
• TTN : !(log # )

• Systems well-suited for representation with TTN:
• Systems with long-range correlations
• Two-dimensional systems
• Image data

1. Optimize the TN
2. Use TN for initializing the 

paremeterized quantum circuit
3. Optimize the PQC

Procedure flow

• The vanishing gradient problem observed during the execution of 
quantum variational algorithms

• Previous studies suggest that initializing quantum circuits with TN 
can avoid barren plateaus.

Barren plateau

• Stable gradients regardless of 
system size or circuit depth

Results of previous study

M. S. Rudolph. et al. 2022.

• The number of quantum gates required to accurately embed a TN 
with bond dimension ( into a quantum circuit increases 
exponentially with (.

• For MPS, there are methods to approximately embed them into 
shallow circuits, but no such methods have been devised for TTN.

Challenges

Proposed method

Workflow

(a)

! = 16 ! = 4 ! = 2

|"!,# >

Truncate
Convert   
to TTD

Disentangle

Contract and Truncate
(Merge and Penetrate algorithm)

!′ ≤ 16 !′ ≤ 4 !′ = 2

(e)

|"!$%,#& >

! = 2 ! = 2 ! = 2

(b)

|"!,' >

(c)

! = 2 ! = 2 ! = 2! = 2

$!

(d)

"!$%,# >= $!✝ "!,# >

Canonicalize and Repeat

• Merge

Merge and Penetrate algorithm

SVDReshapeContract

• Penetrate

Contract

• Repeat following steps to obtain TTN-shape |*!"#,%& > from leaf nodes
• When tensors are connected along the 2-axis → Merge
• When tensors are connected along the 1-axis → Penetrate

Future prospects

• The SVD decomposition in the Penetrate algorithm is locally 
optimal but not globally optimal.

• Although computational complexity increases, considering larger 
nodes for decomposition could improve accuracy.

Applications
• VQE for 2D quantum systems
• Generative models for images

Results

• Achieving accuracy comparable to methods used in prior research 
with MPS.

• The cause of lower convergence accuracy is information loss in the 
Penetrate algorithm.

What we want to do?

Mapping

The generated quantum circuit composed of two-qubit gates
(In the case of & = 2)

$' $% $(

Computational complexity
• Contract and Truncate (Merge and Penetrate algorithm)
• Penetrate algorithm: ! (' per iteration
• Number of penetrations per node︓!(log#)

!(# log# (')

• Canonicalization of TTN
!(#(())

• Overall
! max(#((), # log# (' )

System size︓#
Maximum bond dimension︓(

# of layers︓0

Note: !(#(*) for MPS

The original TTN |"(,# >

Integration with 
Decomposition by Optimization algorithm
• Accuracy improvement through integration confirmed for MPS.
• Achieving better accuracy with shallower circuits.

Improvement of the Penetrate algorithm
M. S. Rudolph. et al. 2022.

S. Cheng. et al. 2019.

Why	TTD?
TTD︓Tree	Tensor Disentangler

.(,* >= 1( 0 >⨂,
1(✝ .(,* >= 0 >⨂,

All tensors have the shape (2,2,2,2)
Precisely convertible to quantum circuits

# of required quantum gates: !(0# log#)



Tensor Network Monte Carlo

• Many physical problems can be formulated in terms of tensor network 

• classical lattice models (Ising model, etc) 

• quantum lattice models (via Suzuki-Trotter decomposition, etc) 

• quantum circuits, real-time unitary evolution 

• Exact contraction is not possible in higher dimensions 

• low-rank approximation based on SVD 

• Markov-chain Monte Carlo sampling of “projectors" 

• can remove systematic bias of low-rank approximation 

• can reduce statistical error by MCMC 

• exponential speed up of MCMC 

• can solve “negative sign problem"
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Tensor Network Decoder for Error Correction

• Decoding in Stabilizer Code (e.g., surface code) 

• Using information from noise models can improves 

performance of TN decoder 

• How to determine / infer the noise model? 

• Is it possible to extract from syndrome 

measurement results? 

• Syndrome measurement + TN likelihood calculation 

+ Bayesian inference + Monte Carlo sampling 

  → Quantum Noise Estimation → Decoder

Takumi Kobori and ST, arXiv:2406.08981 

Darmawan, Poulin (2018)

MWPM

TN decoder

static noise model case time-dependent case


