



#### Tensor Network and Quantum Computation

- Members
  - S. Todo (Prof.), H. Suwa (Assist. Prof.), T. Okubo (Proj. Assoc. Prof.),
    M. Yamada (Proj. Lecturer), S. Mukherjee/A. Iwaki/T. Sakashita (Proj. Assist. Prof.), 4 Proj. Researchers, 3 Visiting Researchers, 10 Graduate Students
- Research topics
  - Development of simulation methods for strongly correlated systems
  - Novel states, phase transition phenomena, and dynamics in strongly correlated many-body systems
  - Quantum computation algorithms and software
  - Data science and machine learning
  - Open-source software development for next generation parallel simulations













### Development of Simulation Methods for Strongly Correlated Systems

- Hilbert space dimension  $\sim$  exponentially increasing with system size

⇒ Represented in a form that facilitates simulation without losing important physical properties

- Randomized algorithms classical and quantum Monte Carlo sampling
  - Representation of quantum fluctuations by imaginary-time path integrals
  - Detailed balance-breaking Markov chain Monte Carlo, event chain Monte Carlo, order-N methods for long-range interacting systems
  - Negative sign problems
    - → Keisuke Murota, Sora Shiratani, Hidemaro Suwa
- Information compression by tensor networks
  - Decompose information into networks by considering "entanglement" of information
  - Tensor network renormalization group method, application to quantum computing





# **Tensor Network Representation**

- ・Quantum state of quantum many-body systems / 量子多体系の量子状態
  - MPS, Tree TN, MERA, PEPS  $\rightarrow$  Tohru Mashiko, Tsuyoshi Okubo
  - Sampling Complexity of MPS at finite temperature
    - → Atsushi Iwaki (poster presentation) PRB 109, 224410 (2024)

#### ・ Partition function in statistical physics / 統計力学模型の 分配関数

- ・TN renormalization / TN繰り込み群
- Application to lattice field theories
  - → Ho Pai Kwok, Shinichiro Akiyama
- Machine learning using TN / テンソルネットワークによる機械学習
  - Compression of neural networks/generative models /
    - ニューラルネットワーク・生成モデルの圧縮
      - $\rightarrow$  collaboration with private companies
- Compression in hierarchical structure / 階層構造の情報圧縮
  - ・Quantics representation / 同次多項式表現
  - TN simulation of PDE / 偏微分方程式のTNシミュレーション
    - → Rihito Sakurai





(a)





Gourianov et al (2022)

# Quantum Embedding: from QC to TN

・Conversion from QC to TN is straightforward / 量子回路からTNへの変換は容易

 $B_f$ 

ers and Bay

 $X^{\frac{1}{4}}$ 

 $Z^{\frac{1}{2}}$ 

 $X^{\frac{1}{2}}$ 

ノイズモデルう

- High-performance TN simulator / 高性能なTNシミュレーター
  - Optimization of TN contraction order based on graph theory / グラフ理論によるTN縮約順序の最適化
    - → Sayan Mukherjee
  - Combination with MCMC sampling / MCMCサンプ
     リングとの組み合わせ → ST, Hidemaro Suwa, Sora Shiratani
- ・Quantum error correction / 量子誤り訂正
  - Noise model prediction usi
     estimation / TNデコーダーと/
    - → Takumi Kobori (arXiv:24

 Decomposition of multi-contion
 ゲートの分解 → Ken Nakanishi (poster presentation, PRA 110, 012604 (2024))

・Conversion from "Quantum State" to TN is not straightforward / 「量子状態」からTNへの変換は非自明

 $|0\rangle_{\frac{1}{3}}$ 





## Quantum Embedding: from TN to QC

- ・Conversion from TN to QC is not straightforward / TNから量子回路への変換は非自明
  - Matrix product state to QC / 行列積状態から量子回路
    - ・Quantum state preparation / 量子状態の準備
    - ・Generalization for Tree Tensor Network / ツリーテンソルネットワークへの一般化
      - → Shota Sugawara (poster presentation)



- Transformation from tensor networks including loops / ループを含むテンソルネット ワークからの変換 → Tsuyoshi Okubo
- Embe of real in ginary-time evolution / 実時間・虚時間発展の埋め込み
   ・ Quantum Singular Value Transformation

・Tersor net vor duantum simulation on QC / QC上でのTN量子シミュレーション

## **Tensor Network Monte Carlo**

- Many physical problems can be formulated in terms of tensor network
  - classical lattice models (Ising model, etc)
  - quantum lattice models (via Suzuki-Trotter decomposition, etc)
  - quantum circuits, real-time unitary evolution
- Exact contraction is not possible in higher dimensions
  - low-rank approximation based on SVD
- Markov-chain Monte Carlo sampling of "projectors"
  - can remove systematic bias of low-rank approximation
  - can reduce statistical error by MCMC
    - exponential speed up of MCMC
  - can solve "negative sign problem"



average sign







#### ST in preparation

## **Tensor Network Decoder for Error Correction**

- Decoding in Stabilizer Code (e.g., surface code)
  - Using information from noise models can improves performance of TN decoder
- How to determine / infer the noise model?
  - Is it possible to extract from syndrome measurement results?
- Syndrome measurement + TN likelihood calculation
  - + Bayesian inference + Monte Carlo sampling
    - $\rightarrow$  Quantum Noise Estimation  $\rightarrow$  Decoder







#### Darmawan, Poulin (2018)



#### Takumi Kobori and ST, arXiv:2406.08981