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Prologue

New physics, understanding the fundamentals,….
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Science Comm., DESY, Zeuthen
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We are here :)
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The multi-messenger paradigm

Compact object 
mergers, TDEs, 

CCSNe,….

Image credits: https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/
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The high-energy multi-messenger transients

High-energy 
astrophysical 
phenomena
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GW170817

GW 
(Adv. LIGO+Virgo)

Gamma rays  
(Fermi+Integral)

Optical 
(HST)

X-rays 
(Chandra)

No neutrinos :(

~ 40 Mpc (NGC 4993)

Image credits: https://ahead.iaps.inaf.it
Abbott et al. 2017, ApJ 848, L13
Troja, Piro, van Earthen et al., 2017, Nature, 551, 71

https://ahead.iaps.inaf.it/?page_id=1437&print=print
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The multi-messenger paradigm

Compact object 
mergers, TDEs, 

CCSNe,….

Image credits: https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/

High-energy 
neutrinos
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High-energy neutrino detectors

Image credits: icecube.wisc.edu

Effective volume ∼ 1 km3

http://icecube.wisc.edu
https://www.youtube.com/watch?v=2DDQYHIbL3Q
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High-energy neutrino detectors

Image credits: icecube.wisc.edu
KM3NeT: Edward Berber, Nikhef

Effective volume ∼ 1 km3

KM3NeT

ANTARESBaikal GVD

Future detectors: IceCube-Gen2, 
RNO-G, GRAND, P-ONE….

http://icecube.wisc.edu
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NGC 1068 (also TXS 0506+056)

 
excess events

∼ 79+22
−20

 w.r.t 
110 known 
gamma ray 

sources

∼ 4.2σ

10 years of PS 
data 

(2011-2020)

IceCube Collab.+ Science 2022
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The Galactic plane

10 years of PS data 
(2011-2020)

 diffuse emission models 
w.r.t background only hypothesis
∼ 4.5σ

IceCube Collab.+ Science, 380, 2023
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High-energy (HE) neutrinos

p + p → Nπ + X p + γ → Nπ + X

π± → νμ + ν̄μ + νe(or ν̄e) + e±

π0 → γ + γ
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High-energy (HE) neutrinos

Conditions for HE-  production: 

a) Acceleration of ions (p and nuclei) to sufficiently high 
energies - Shocks, magnetic reconnection, stochastic 
acceleration aided by turbulence


b) Rate of acceleration > Rate of energy loss

ν

p + p → Nπ + X p + γ → Nπ + X

π± → νμ + ν̄μ + νe(or ν̄e) + e±

π0 → γ + γ
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High-energy (HE) neutrinos

Conditions for HE-  production: 

a) Acceleration of ions (p and nuclei) to sufficiently high 
energies - Shocks, magnetic reconnection, stochastic 
acceleration aided by turbulence


b) Rate of acceleration > Rate of energy loss

c) Significant density on target media - matter and 

radiation

d) (a) and (b) -> production of charged mesons - pions 

that decay into neutrinos, charged leptons, and 
gamma-rays 

ν

p + p → Nπ + X p + γ → Nπ + X

π± → νμ + ν̄μ + νe(or ν̄e) + e±

π0 → γ + γ

t−1
pp = nNκppσppc

t−1
pγ (ϵp) =

c
2γ2

p ∫
∞

ϵ̄th

dϵ̄κpγ(ϵ̄)σpγ(ϵ̄)ϵ̄∫
∞

ϵ̄/2γp

dϵϵ−2nϵ

Proton energy loss due to p-p interactions

Proton energy loss due to p-  interactionsγ

Nucleon density

Proton inelasticity

p-p cross-section

Proton energy

Photon energy in 
proton rest frame

p-  cross-sectionγ
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The high-energy multi-messenger transients

High-energy

astrophysical 
phenomena



BNS mergers: particle accelerators and multi-messenger zoo
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ν

GW

BNS

S. Gezari, Annu. Rev. Astron. Astrophys. 2021. 59:21–58
Kimura+, PRD (2018), Fang & Metzger (2017)
Mukhopadhyay & Kimura (2024)
LIGO Collab (2017)Observed



BNS mergers: particle accelerators and multi-messenger zoo
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EM ν

GW

Kilonova emission

Afterglow emission


Short GRB

S. Gezari, Annu. Rev. Astron. Astrophys. 2021. 59:21–58
Kimura+, PRD (2018), Fang & Metzger (2017)
Mukhopadhyay & Kimura (2024)
LIGO Collab (2017)

Observed

Observed

BNS
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EM
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S. Gezari, Annu. Rev. Astron. Astrophys. 2021. 59:21–58
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BNS mergers: particle accelerators and multi-messenger zoo
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EM ν

GW CR

Kilonova emission

Afterglow emission


Short GRB

Cosmic 
accelerators

S. Gezari, Annu. Rev. Astron. Astrophys. 2021. 59:21–58
Kimura+, PRD (2018), Fang & Metzger (2017)
Mukhopadhyay & Kimura (2024)
LIGO Collab (2017)

Observed

Observed

IceCube-Gen2 PS 
limit

GRAND-200k

Fiducial

BNS
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Outline

Part 1: High-energy neutrino emissions from magnetars


Based on: High-energy neutrino signatures from pulsar remnants of binary neutron-star mergers: 
coincident detection prospects with gravitational waves

MM, S.S. Kimura 

(in preparation)


Electromagnetic signatures from pulsar remnants of binary neutron-star mergers

MM, S.S. Kimura 

(in preparation)


Part 2: Hunting for high-energy and ultrahigh energy neutrinos from BNS mergers at 
next-generation GW and neutrino detectors


Based on: Gravitational wave triggered high energy neutrino searches from BNS mergers: prospects for 
next generation detectors

MM, S. S. Kimura, K. Murase

Phys. Rev. D 109, 4, 043053 (2024) (arXiv: 2310.16875) 

Ultrahigh energy neutrino searches using next-generation gravitational wave detectors at radio neutrino 
detectors: GRAND, IceCube-Gen2 Radio, and RNO-G 
MM, K. Kotera, S. Wissel, K. Murase, S.S. Kimura

(in preparation)



27

Outline

Part 1: High-energy neutrino emissions from magnetars 

Based on: High-energy neutrino signatures from pulsar remnants of binary neutron-star mergers: 
coincident detection prospects with gravitational waves 
MM, S.S. Kimura  
(in preparation) 

Electromagnetic signatures from pulsar remnants of binary neutron-star mergers 
MM, S.S. Kimura  
(in preparation) 

Part 2: Hunting for high-energy and ultrahigh energy neutrinos from BNS mergers at 
next-generation GW and neutrino detectors


Based on: Gravitational wave triggered high energy neutrino searches from BNS mergers: prospects for 
next generation detectors

MM, S. S. Kimura, K. Murase

Phys. Rev. D 109, 4, 043053 (2024) (arXiv: 2310.16875) 

Ultrahigh energy neutrino searches using next-generation gravitational wave detectors at radio neutrino 
detectors: GRAND, IceCube-Gen2 Radio, and RNO-G 
MM, K. Kotera, S. Wissel, K. Murase, S.S. Kimura

(in preparation)



28

Fate of NS-NS mergers

Piro, Giacomazzo, Perna arXiv:1704.08697

NS-NS Merger

BH-Torus,Jet

Prompt 

Collapse

Rapidly differentially-
rotating neutron star

Hyp
erm

assi
ve BH

Supramassive

BH

Stable NS

Fate decided by EOS, Mass, Spin, ….
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Model
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Model: Evolution of thermal, non-thermal, and magnetic energies

31

Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916 
Fang, K. & Metzger, B.D. 2017, ApJ 849, 153

Magnetar’s spin down energy

Non-thermal 
energy Thermal 

energy

Magnetic

Energy



Model: Evolution of thermal, non-thermal, and magnetic energies

32

Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916 
Fang, K. & Metzger, B.D. 2017, ApJ 849, 153
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Model: Evolution of thermal, non-thermal, and magnetic energies
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Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916 
Fang, K. & Metzger, B.D. 2017, ApJ 849, 153
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Model: Evolution of thermal, non-thermal, and magnetic energies
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Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916 
Fang, K. & Metzger, B.D. 2017, ApJ 849, 153
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amplification parameter ϵB ∼ 10−2



Model: Evolution of thermal, non-thermal, and magnetic energies
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Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916 
Fang, K. & Metzger, B.D. 2017, ApJ 849, 153
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amplification parameter ϵB ∼ 10−2
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dt
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Model: Evolution of thermal, non-thermal, and magnetic energies
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Lsd = α
μ2Ω4

c3
= 7.13 × 1045 erg s−1 ( Bd

1014 G )
2

( Pi

0.003 s )
−4

(1 +
t

tsd )
−2

tsd = 5.63 × 105 s ( Bd

1014 G )
−2

( Pi

0.003 s )
2

Fiducial: 
Bd = 1014 G, Pi = 0.003 s, Mej = 0.03 M⊙, βej = 0.03

Optimistic: 
Bd = 2.5 × 1013 G, Pi = 0.001 s, Mej = 0.1 M⊙, βej = 0.1



Cosmic ray (CR) proton acceleration: injection spectra

37

p
p

p p

pp
pp

·Np = nGJ2Apcc =
4π2

Ze
R3

*

c
B0

P2

nGJ = −
Ω ⋅ B
2πZec

CR protons extracted from the magnetar surface: Goldreich-
Julian (GJ) number density of charges

·Np = nGJ2Apcc =
4π2

Ze
R3

*

c
B0

P2

nGJ = −
Ω ⋅ B

2πZec

p

p

p

p

p

p p

pp
p

p p

pp
pp

Termination 
shock (TS)

Polar cap

+Acceleration sites:



Cosmic ray (CR) proton acceleration: injection spectra
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d ·Np,inj

dε′ p
= ·Nnorm

p Qinj
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Cosmic ray (CR) proton acceleration: injection spectra
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d ·Np,inj

dε′ p
= ·Nnorm

p Qinj
p (ε′ p) = ·Nnorm

p exp (−
ε′ p

ε′ cutoff
p )

( ε′ p

ε′ cutoff
p )

−1

, ε′ p < ε′ cutoff,pc
p or ε′ cutoff,TS

p < ε′ cutoff,pc
p

( ε′ p

ε′ cutoff
p )

−2

, ε′ p > ε′ cutoff,pc
p and ε′ cutoff,TS

p > ε′ cutoff,pc
p ,

ε′ cutoff,pc
p = min [ε′ pc

max, ε′ curv]

ε′ cutoff
p = max [ε′ cutoff,pc

p , ε′ cutoff,TS
p ]

ε′ pc
max = 4ηgap(Ze)Bd ( πR*

cP )
2

R*

ε′ curv = γpmpc2 = [
3m4

pc8BdR2
curv

2e ]
1/4



Cosmic ray (CR) proton acceleration: injection spectra
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d ·Np,inj

dε′ p
= ·Nnorm

p Qinj
p (ε′ p) = ·Nnorm
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ε′ p
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p or ε′ cutoff,TS

p < ε′ cutoff,pc
p

( ε′ p
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loss
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Cosmic ray (CR) proton acceleration
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The money plot: Neutrino fluences (takeaway)
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Peak fluence: ∼ 3 × 10−4 GeV cm−2 Peak fluence: ∼ 2 × 10−3 GeV cm−2

Neutrino energy: ∼ 107 GeV − 108 GeV

Peak fluence  post-merger∼ 106 s Peak fluence  post-merger∼ 106.5 s

dL = 40 Mpc

IceCube-Gen2 PS 
limit

GRAND-200k

Fiducial

IceCube-Gen2 

PS limit
GRAND-200k

Optimistic



Neutrino fluences: timescales
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IceCube-Gen2 PS 
limit

GRAND-200k

Fiducial



Neutrino fluences: importance of pion cooling
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IceCube-Gen2 PS 
limit

GRAND-200k

Fiducial

Pion cooling not 
important

Pion cooling 
important
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Outline

Part 1: High-energy neutrino emissions from magnetars


Based on: High-energy neutrino signatures from pulsar remnants of binary neutron-star mergers: 
coincident detection prospects with gravitational waves

MM, S.S. Kimura 

(in preparation)


Part 2: Hunting for high-energy and ultrahigh energy neutrinos from BNS 
mergers at next-generation GW and neutrino detectors 

Based on: Gravitational wave triggered high energy neutrino searches from BNS mergers: 
prospects for next generation detectors 
MM, S. S. Kimura, K. Murase 
Phys. Rev. D 109, 4, 043053 (2024) (arXiv: 2310.16875) 

Ultrahigh energy neutrino searches using next-generation gravitational wave detectors at radio 
neutrino detectors: GRAND, IceCube-Gen2 Radio, and RNO-G 
MM, K. Kotera, S. Wissel, K. Murase, S.S. Kimura 
(in preparation)
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Next-generation GW and neutrino detectors

Einstein Telescope (ET)

Evans et al., (2021)

IceCube-Gen2



Detection strategy: triggered stacking search

47

Trigger from next-
gen GW detectors

Neutrinos in 
IceCube-Gen 2

δt ≈ 1 s − 107 s

δt δt δt δt

1 signal 
event

1 signal 
event

1 2 4

 Ic
eC

ub
e-

G
en

2

da

ta

t3

t2
t4

53

Triggered-stacking searches

t1

t5

δt
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Next-generation GW detectors

Sensitive to NS-NS 
mergers from very 

high redshifts

Evans et al., (2021)



Impacts on triggered stacking searches
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Trigger from next-
gen GW detectors

Neutrinos in 
IceCube-Gen 2

δt ≈ 1 s − 107 s

δt1

δt2
δt4

δt5

1 2 4

 Ic
eC

ub
e-

G
en

2

da

ta

t3
t2

t4
53

Largely uncertain 
time-windows

t1
t5

δt3

Sensitivity to high-
redshifts -> lots of 

triggers

Spoils triggered 
stacking searches

How do we find 
meaningful triggers?
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Motivations: How to obtain meaningful triggers?

Use the sky localization capabilities of the GW detectors….

Fraction of total 
sky area covered Set threshold: fth

Obtain distance 
limits for GW 

detectors to collect 
meaningful triggers

Abbott et al., Liv. Rev. Rel. (2020)
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Sky localization and BNS merger rate

Chan et al., PRD (2018)
Wanderman & Piran, MNRAS (2015)

ET

ET+CE

CE
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Distance limits for GW detectors

δt = 1000 s

∫
d lim

GW

0
d(dcom)

ΔΩ(dL)
4π

R(z)4πd2
comδt = fcov(dlim

GW)

CE
ET

ET+CE

δt = 1000 s

fth = 10−2

fth = 10−3

fth = 10−4dlim
GW ∼ 1.85 Gpc

dlim
GW ∼ 1.12 Gpc
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Distance limits for GW detectors -  planeδt − fth

Log10dUL
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High energy neutrinos from BNS mergers

I(zGW
lim , Top) = 4π∫

dUL
com

0
d(dcom)

Top

(1 + z(dcom))
R(z(dcom))d2

comPn≥1((1 + z(dcom))dcom)

q(zGW
lim , Top) = 1 − Exp( − I(zGW

lim , Top))

dUL
com = min(dGW

hor (zGW
lim ), dGW

max(zGW
max))

ϕν(EHE
ν , Eν, r) =

1
4πr2

EHE
ν

ln(EUL
ν /ELL

ν )
E−2

ν

Probability to detect more than one neutrino 

I(dUL
GW) = 4π∫

dUL
GW

0
d(dcom)

Top

(1 + z)
R(z)d2

comPn≥1(dL)

q(dUL
GW, Top) = 1 − exp( − TopI(dUL

GW))

dUL
GW = min(dlim

GW, dhor
GW)

ϕν(ℰHE,iso
ν , Eν, dL) =

(1 + z)
4πd2

L

ℰHE,iso
ν

ln(εmax
ν /εmin

ν )
E−2

ν

Probability to detect more than one neutrino 
associated with GW signal in  
Top

Probability to detect 
more than one neutrino


Assume a Poissonian probability


The event rate is calculated is 
convoluting the IceCube 10 years 

point source effective area with the 
muon neutrino flux


The flux is calculated assuming a 
spectrum. 
dNν /dEν ∝ E−2

ν

Depends on δtDepends on fν

ℰHE,iso
ν =

ℰHE,true
ν

fbm
= ( fν

fbm )ℰGW

ℰHE,true
ν = fνℰGW α ∼ 1 %ℰGW ∼ αℰtot
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Results - varying  and fν δt

δt

fν

Fiducial Parameters:






fν = 2.5 × 10−5

δt = 1000 s
Etot ∼ 5 × 1054erg

10−5 5 × 10−5

1 s 106 s

Motivated by 
physical models
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Results - varying  and fν δt
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δt =
1
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δt = 10 6 s

δt =
1

s

δt = 10 6s

λ = 10−5
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Backgrounds

N bkg
trig = 0.01

N bkgtrig = 0.1

N bkgtrig = 1
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Next-generation GW and UHE neutrino detectors

Einstein Telescope (ET) Cosmic Explorer (CE)

GRAND IceCube-Gen2 Radio RNO-G
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GW-triggered UHE neutrino searches at GRAND-200k

2σ 2σ

2σ 2σ

3σ 3σ

3σ
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GRAND-200k GRAND-200k

GRAND-200k

GRAND-200k
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Prospects for GRAND and IceCube-Gen2 Radio
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Joint UHE neutrino network: FOV



Takeaways
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Thank You!



Backup
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