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The Standard Model has been extremely successful
in describing the properties and interactions of the known elementary particles.

But, as the queries like origin of EWSB, neutrino mass, existence of dark matter etc.
remain unanswered in the domain of the SM, it empowers the search for BSM physics.

The signature of BSM scenarios still remains a secret! The probability of striking and
macroscopic new physics signatures with a moderate increase in energy appears low.
We will probably have to disentangle small distortions from large SM backgrounds.

A huge amount of data will be accumulated in the HL-LHC. It is clear that
an alternative path to uncover possible new physics is the search for

small deviations from the predictions of the SM, and that
precision is the key.
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DRELL-YANa
l

l̄

Standard model precision studies

Precise measurement ofmW (< 10 MeV)!

Precision determination of sin2 θW .

BSM studies

Precise determination of the SM background is
crucial for BSM studies!
Requires control of the SM prediction at the
O(0.5%) level in the TeV region.
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Perturbative expansion

Parton model

σtot(z) =
∑

i,j∈q,q̄,g,γ

∫
dx1dx2 fi(x1, µF )fj(x2, µF )σij(z, ε, µF )

In the full QCD-EW SM, we have a double series expansion of the partonic cross
sections in the electromagnetic and strong coupling constants, α and αs , respectively:
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Perturbative expansion : QCD corrections

σij(z) = σ
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]
NLO
Altarelli, Ellis, Martinelli (1979);

NNLO
Hamberg, Matsuura, van Neerven (1991);
Anastasiou, Dixon, Melnikov, Petriello (2003);
Catani, Cieri, Ferrera, de Florian, Grazzini (2009);

N3LO
Ahmed, Mahakhud, NR, Ravindran (2014); Duhr, Dulat, Mistlberger (2020); Chen, Gehrmann, Glover,
Huss, Yang, Zhu (2021); Camarda, Cieri, Ferrera (2021); Chen, Gehrmann, Glover, Huss, Monni, Re,
Rottoli, Torrielli (2022)
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Perturbative expansion : EW corrections

σij(z) = σ
(0)
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NLO
Baur, Brein, Hollik, Schappacher, Wackeroth (2002);
Carloni Calame, Montagna, Nicrosini, Vicini (2007);
Dittmaier, Huber (2010);

NNLO (approximated)
Jantzen, Kühn, Penin, Smirnov (2005);
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Perturbative expansion : mixed corrections

σij(z) = σ
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NLO QCD and NLO EW corrections are separately large. What about the mixed
corrections, particularly σ(1,1)

ij (z)?
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Recent progress in the NNLO mixed QCDxEW corrections

On-shell Z/W production
• Pole approximation : Dittmaier, Huss, Schwinn;
• Analytic QCDxQED corrections : de Florian, Der, Fabre;
• pZ

T distribution in QCDxQED including pT resummation : Cieri, Ferrera, Sborlini;
• Differential on-shell Z production including QCDxQED : Delto, Jaquier, Melnikov, Roentsch;
• Total QCDxEW corrections to Z production (fully analytic):
Bonciani, Buccioni, NR, Triscari, Vicini; Bonciani, Buccioni, NR, Vicini;
• Differential on-shell Z/W production including QCDxEW :
Behring, Buccioni, Caola, Delto, Jaquier, Melnikov, Roentsch;

Technical developments
• Master integrals : Aglietti, Bonciani; Bonciani, Di Vita, Mastrolia, Schubert; Heller, von Manteuffel,
Schabinger; Long, Zhang, Ma, Jiang, Han, Li, Wang; Liu, Ma;
• Mixed QCD-QED splitting functions : de Florian, Sborlini, Rodrigo;
• Renormalisation : Degrassi, Vicini; Dittmaier, Schmidt, Schwarz; Dittmaier;

Complete Drell-Yan
• neutrino pair production in QCDxQED : Cieri, de Florian, Der, Mazzitelli;
• pp → lνl + X in QCDxEW : Buonocore, Grazzini, Kallweit, Savoini, Tramontano;
• two-loop amplitudes: Heller, von Manteuffel, Schabinger; Armadillo, Bonciani, Devoto, NR, Vicini;
• Complete NNLO QCDxEW corrections to neutral current Drell-Yan:
Bonciani, Buonocore, Grazzini, Kallweit, NR, Tramontano, Vicini;
Buccioni, Caola, Chawdhry, Devoto, Heller, von Manteuffel, Melnikov, Röntsch, Signorile-Signorile;
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Why σ(1,1)
ij (z) is important?
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αs(mZ ) ≃ 0.118 α(mZ ) ≃ 0.0078 αs(mZ )
α(mZ )

≃ 15.1
α3s(mZ )

αs(mZ )α(mZ )
≃ 1.8

1. From naive argument of coupling strength, N3LO QCD ∼ mixed NNLO QCD⊗EW.
2. However, in specific phase-space points, fixed order EW corrections can become
very large because of logarithmic (weak and QED Sudakov type) enhancement.
These effects are large forW mass measurements. On the other hand, these
corrections suffer from large uncertainties coming from unphysical scales.

3. N3LO QCD corrections control the uncertainties arising from the unphysical
scales, but they lack the large EW effects.

4. The EW corrections reduce the input scheme dependence (from 3.53% to 0.23%).

The NNLO mixed QCD-EW corrections
• have similar magnitude as N3LO QCD,
• contain the large EW effects,
• reduce the theoretical uncertainties.
• reduce the input scheme dependence.

NNLO QCD⊗EW corrections extremely important for high (O(10−4)) precision pheno.
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NNLO contributions to NC/CC Drell-Yan

Pure Virtual

+ · · ·+

Real-Virtual

+ · · ·+

Double Real

+ · · ·+

Each individual contribution is divergent : 1
ϵ
in dimensional regularization
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NNLO contributions to NC/CC Drell-Yan

Pure Virtual

+ · · ·+ - S(1,1)

Real-Virtual

+ · · ·+

Double Real

+ · · ·+

} + dσ(1,1)
CT

Subtraction : S(1,1) ∼
∫
dσ

(1,1)
CT ⇒ The two sets are separately finite!
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NNLO contributions to NC/CC Drell-Yan

Pure Virtual

+ · · ·+

The two-loop virtual amplitudes contain divergences of two types

(a) Ultraviolet divergences : UV renormalization of fields and couplings
(b) Infrared divergences : Soft (soft gluons & photons) & collinear (collinear partons)

p⃗

k⃗

1
(k + p)2

=
1

2k.p
=

1
2k0p0(1− cos θ)

k0 → 0 Soft divergence
θ → 0 Collinear divergence

The infrared structure of scattering amplitudes is universal!
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Ultraviolet renormalization
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed QCD⊗EW
contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ Renormalization of lepton wave function receives one-loop EW contributions.

+

⊗
+ ⊗ ⇒ UV finite

We consider massive leptons, but small mass limit. In that case, the QED part of the
renormalization constant is with massive lepton. On the other hand, the weak part can be
computed using massless lepton.
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Ultraviolet renormalization

⊛ The Born contribution is zeroth order in αs , hence no αs renormalization is needed.

⊛ Renormalization of quark wave function receives one-loop EW and two-loop mixed QCD⊗EW
contributions in the on-shell scheme.

+

⊗
+ ⊗ ⇒ UV finite

⊛ Renormalization of lepton wave function receives one-loop EW contributions.

+

⊗
+ ⊗ ⇒ UV finite

⊛ The computation is performed in background field gauge, with the advantage that the vertex
and propagator contributions are separately UV finite.

+
⊗

+
⊗ • ⇒ UV finite

13



Infrared divergences and lepton mass : NC DY
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The infrared divergences and lepton mass : NC DY

The infrared structure of scattering amplitudes is universal!
M(1,1)

fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)
fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

15



The infrared divergences and lepton mass : NC DY

The infrared structure of scattering amplitudes is universal!
M(1,1)

fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)
fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

Z

Z

≡
Z

Z

+ O(
m2

l
s
)
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The infrared divergences and lepton mass : NC DY

The infrared structure of scattering amplitudes is universal!
M(1,1)

fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)
fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and one Z boson, it generates
a collinear singularity. However, thanks to [Frenkel, Taylor], once all diagrams are summed up, the
collinear divergences cancel.

Z

γ
≡

Z

γ

− I(ϵ) + Cl log
(m2

l
s

)
+O(

m2
l

s
)

It is also reflected in the subtraction formula e.g. for the QED box part

[
H(−1, yl) − H(−1, zl)

]
|ml→0 ≡ log(t/u)
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The infrared divergences and lepton mass : NC DY

The infrared structure of scattering amplitudes is universal!
M(1,1)

fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)
fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and one Z boson, it generates
a collinear singularity. However, thanks to [Frenkel, Taylor], once all diagrams are summed up, the
collinear divergences cancel.

(c) Hence, the collinear singularities from leptons (logml) come from only the QED-type
corrections to the lepton vertex, which we compute with full lepton mass dependence.
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Infrared divergences and lepton mass : CC DY
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The infrared divergences and lepton mass : CC DY

The infrared structure of scattering amplitudes is universal!
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The final state emitters (leptons) are massive!
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Divergence regulator massless lepton : 1
ϵ massive lepton : logml
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fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and oneW boson, it
generates a collinear singularity. However, there is either “t” or “u” channel diagrams. Hence,
unlike the NC DY, the collinear divergences do not cancel once all diagrams are summed up.
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The infrared divergences and lepton mass : CC DY

The infrared structure of scattering amplitudes is universal!
M(1,1)

fin = M(1,1) − I(1,1)M(0) − I(0,1)M(1,0)
fin − I(1,0)M(0,1)

fin

The final state emitters (leptons) are massive!
The full computation with lepton mass is extremely difficult!

Divergence regulator massless lepton : 1
ϵ massive lepton : logml

(a) When the lepton is attached to a massive boson, it does not generate any collinear divergence.
Hence, in all such cases, we can safely assume a massless lepton.

(b) In a single box diagram, where lepton is attached to one photon and oneW boson, it
generates a collinear singularity. However, there is either “t” or “u” channel diagrams. Hence,
unlike the NC DY, the collinear divergences do not cancel once all diagrams are summed up.

(c) The corrections to the lepton vertex also contains these collinear singularities.

In one approach, we compute everything considering massless leptons and then do massification:

|Mm⟩ = JmJ−1
0 |M0⟩

In another approach, we compute (b) & (c) considering massive leptons using SeaSyde.
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Computational procedure
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Computational procedure
d = 4− 2ϵ

• Diagrammatic approach -> QGRAF/FeynArts to generate Feynman diagrams
• In-house FORM/Mathematica routines for algebraic simplification :

Lorentz, Dirac and Color algebra

• Decomposition of the dot products to obtain scalar integrals

• Identity relations among scalar integrals : IBPs, LIs & SRs

• Algebraic linear system of equations relating the integrals
⇓

Master integrals (MIs)

————————————————————————

• Computation of MIs : Method of differential equation & SeaSyde

• Ultraviolet renormalization

• Subtraction of the universal infrared poles (S(1,1)).

• Numerical evaluation of the hard function to prepare the grid.
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Computational procedure : γ5

γ5 is inherently a four-dimensional object.
How can we use it in dimensional regularization?

Anti-commutation Cyclicity of the trace
{γµ, γ5} = 0

’t Hooft and Veltmann X ✓

Kreimer et al. ✓ X

For the mixed QCD-EW corrections to the NCDY, the two prescriptions yield

• Different one- and two-loop scattering amplitudes

• Same finite remainder after subtraction
[Heller, von Manteuffel, Schabinger, Spiesberger]
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Computational procedure : γ5

γ5 is inherently a four-dimensional object.
How can we use it in dimensional regularization?

Anti-commutation Cyclicity of the trace
{γµ, γ5} = 0

’t Hooft and Veltmann X ✓

Kreimer et al. ✓ X

Our approach :

• Consider a fixed point to start the Dirac trace.

• Use anti-commutation relation, bring all γ5 at the end and use γ25 = 1.

• Use γ5 =
i
24! ϵµνρσγ

µγνγργσ for the single leftover γ5 .
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The method of differential equations
A Feynman integral is a function of spacetime dimension d and kinematic invariant x, y.

Ji ∼
∫

ddl1

(2π)d
ddl2

(2π)d
1

l21 l
2
2((l1 − l2)2 − m2)(l1 − p1 − p2)2(l2 − p3)2

≡ f(d, x, y)

The idea is to obtain differential eqns. for the integral w.r.t. x, y and solve it.

dx



J1
J2
J3
J4
.
.
.
Jn


=



• • • • · · · •
0 • • • · · · •
0 • • • · · · •
0 0 0 • · · · •
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
0 0 0 0 · · · •





J1
J2
J3
J4
.
.
.
Jn



To solve such a system, we need to perform series expansion in ϵ and to organize the matrix in
each order of ϵ in such a way that it diagonalizes, or at least it takes a block-triangular form. Now,
it can be solved using bottom-up approach.

The homogeneous solutions are in general log or Li2 . Because of the ϵ expansion, the
non-homogeneous solutions are recursive integral over the homogeneous solutions.

The results are obtained in terms of iterated integrals (GPLs).
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Direct numerical integration of Feynman integrals is tedious, unstable and challenging
to obtain precise results.
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Iterated integrals are one-dimensional. They can be computed with great precision in
a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.
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Iterated integrals

From Feynman integrals to iterated integrals : What do we gain?

Iterated integrals are one-dimensional. They can be computed with great precision in
a short amount of time. Besides, they have the following properties:

(a) Shuffle algebra : Allows to obtain a basis for a set of iterated integrals. Reduction to such a
basis is extremely effective to reduce the computation time by few times.

(b) Scaling invariance : Allows to convert the limit of these integrals from kinematical variables (z)
to constants (1). This makes the integration really precise.

MIs available for NC DY

• Form factor type MIs : Aglietti, Bonciani; Bonciani, Buccioni, NR, Vicini;
• Box type (γγ with massive lepton) : Bonciani, Ferroglia, Gehrmann, Maitre, Studerus;
• Box type (γZ & ZZ with massless lepton) :
Bonciani, Di Vita, Mastrolia, Schubert; Heller, von Manteuffel, Schabinger
5 among the 36 two-same-mass MIs of Bonciani et al. contain Chen iterated integrals!
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The 36 two-same-mass master integrals for NC DY

Fully analytic

• Most MIs are solved in GPLs.
• FiveMIs are solved in terms of Chen’s iterated
integrals! Numerical evaluation possible only
in the non-physical region.

Fully numerical

• Evaluation of the MIs in physical region is de-
manding! (using Fiesta/pySecDec)
• Specially for those five MIs, achieving a sin-
gle digit precision in the physical region is ex-
tremely challenging!

Fig from Roberto et al.
Can we find a mixed approach?
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Our semi-analytic approach
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Our semi-analytic approach for NC DY

What do we need for the two-loop virtual amplitudes?
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Our semi-analytic approach for NC DY

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable and precise.

(i) The universal subtraction operator indicates that the singular part of the amplitude
contains only simple GPLs.

(ii) The individual contribution from the five MIs to the single pole of the matrix
element contains the Chen iterated integrals, which cancel after summing them.

(iii) Certain internal combinations of the MIs (at the lowest order in ϵ) can be found
which can be solved in terms of simple GPLs.

So, only simple GPLs in the singular part! SOLVED!
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Our semi-analytic approach for NC DY

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable & precise.

Most of the MIs are known in terms of GPLs. Few MIs (32-36), which contain Chen
iterated integrals, we solve them using series expansion through SeaSyde.

Implemented also in the Mathematica package DiffExp.
[F. Moriello (2019), M. Hidding (2020)]
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Our semi-analytic approach for NC DY

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable & precise.

Most of the MIs are known in terms of GPLs. Few MIs (32-36), which contain Chen
iterated integrals, we solve them using series expansion through SeaSyde.

(i) We consider the system of differential equations for all the 36 MIs. Given a boundary point, the
system can be solved using series expansion for a nearby point.
(ii) The solution in this new point can now be considered as boundary and thus we can go forward
along a path to obtain solution in any phase space point.

·
initial

· ·
·

· ·
sing

·
· ·

· · ·
· ·

· · · ·
final

· ·
·

25



The difference between NC & CC DY

Single mass scale (mZ ormW )

• Most MIs are solved in GPLs.
• Five MIs are solved in terms of Chen’s iter-
ated integrals!

31 MIs : GPLs, 5 MIs : SeaSyde
• Full analytic expressions for poles.
• Semi-analytic expressions for finite part.

Two mass scales
({mZ ,mW } or {ml ,mW })

• Most MIs are not known analytically.
• Some MIs (sub-topologies) are with single
mass scale and are known in terms of GPLs.
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Our semi-analytic approach (1) for CC DY

What do we need for the two-loop virtual amplitudes?
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Our semi-analytic approach (1) for CC DY

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable and precise.

(i) The two-different-mass MIs are generally less divergent (maximum 1
ϵ2
pole)!

Also, the 1
ϵ2
pole of these MIs have been computed.

⇓
The expressions for all except the single pole are analytic!

(ii) We compute the MIs expandingmW aroundmZ in terms of δm and check the single pole
analytically up to O(δ2m).

(iii) Finally, we compute all the MIs using SeaSyde and check the single pole numerically (with
double-precision accuracy) at several phase-space points.
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Our semi-analytic approach (1) for CC DY

What do we need for the two-loop virtual amplitudes?

(a) An analytic formula for the singular part, to perform the infrared subtraction.

(b) A formula for the finite part which should be numerically stable & precise.

We solve all the MIs using SeaSyde. We use NC DY grids as our initial conditions, and solve the
differential equations with respect to the mass.

We start from both the limits (mZ ,mZ ) and (mW ,mW ) and arrive at the same results
(mW ,mZ ) by using corresponding sets of differential equations.

All the known MIs are used to cross-check the SeaSyde result.
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More automatized semi-analytic approach (2) for CC DY

We evaluate all the MIs semi-analytically using SeaSyde. For the MIs with two massive bosons (W
and Z), we consider massless leptons. For the rest, the leptons are massive.

(a) Precise numerical check of the subtraction formula!
(b) Precise & stable numerical evaluation of the subtracted finite part.
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More automatized semi-analytic approach (2) for CC DY

We evaluate all the MIs semi-analytically using SeaSyde. For the MIs with two massive bosons (W
and Z), we consider massless leptons. For the rest, the leptons are massive.

(a) Precise numerical check of the subtraction formula!
(b) Precise & stable numerical evaluation of the subtracted finite part.

(i) We generate the DE w.r.t the Mandelstam s & t using LiteRed.

(ii) We compute the boundary conditions in a point in the physical region using AMFlow, interfaced
with Kira. (∼ 4.5 h for 50 digits on a laptop using 8 threads).

(iii) We solve the DE system using SeaSyde considering complex-valued masses. (Generation of the
grid in (

√
s, cos θ) for 3250 points requires roughly 3 weeks on a cluster with 26 cores.)

Checks using mass evolution : We can write down a DE w.r.t the mass difference (m2
Z − m2

W ) and
solve the DE considering the NC DY result as boundary conditions. (For each (

√
s, cos θ) point, we

do the mass evolution.) We find perfect agreement for both methods.
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More automatized semi-analytic approach (2) for CC DY

We evaluate all the MIs semi-analytically using SeaSyde. For the MIs with two massive bosons (W
and Z), we consider massless leptons. For the rest, the leptons are massive.

(a) Precise numerical check of the subtraction formula!
(b) Precise & stable numerical evaluation of the subtracted finite part.

Checks using mass evolution :
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Recap!
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QGRAF/FeynArts

⇓

In-house FORM/Mathematica routines (ABISS)

⇓

IBP reduction using Kira/LiteRed

⇓

Solving MIs using SeaSyde

⇓

UV renormalization

⇓

IR subtraction

⇓

The finite hard function (H(1,1))
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Finally

The finite part after performing the infrared subtraction contains:
in case of NC DY: GPLs and a few MIs which have been computed using SeaSyde.

in case of CC DY:
approach 1: γW diagrams in GPLs, ZW diagrams contain MIs computed using SeaSyde.
approach 2: All MIs computed using SeaSyde.

Next? Numerical evaluation of the subtracted finite part

NC DY: there are ∼ 11000 GPLs in the full expression. Production of the grid (3250 points) for the
MIs required O(12h) on a 32-cores machine. Evaluation of the GPLs on a single phase-space point,
for 40 digits precision, ranges from few minutes to ∼ 20 minutes, depending on the phase-space
point. Evaluation time substantially goes down for lesser precision.

CC DY: Production of the grid (3250 points) for the MIs required ∼3 weeks on a 26-core HPC. Once
we obtain the MIs, it is a matter of minutes.

** While comparing O(12h) vs. ∼3 weeks, please note that it took substantial amount of time to
compute the NC DY MIs in terms of GPLs.
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Results as usable numerical grid

Below, we present, in Gµ-scheme,H(1,1) as defined by

H
(1,1)

=
1
16

[
2 Re

(
⟨M(0)|M(1,1),fin⟩

⟨M(0)|M(0)⟩

)]
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Input parameters: mZ = 91.1535 GeV, ΓZ = 2.4943 GeV,mW = 80.358 GeV, ΓW = 2.084 GeV
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Results as usable numerical grid

Input parameters: mZ = 91.1535 GeV, ΓZ = 2.4943 GeV,mW = 80.358 GeV, ΓW = 2.084 GeV

We also provide (another) series expansion in δmW in order to obtainH(1,1) for a different value
ofmW (different from the chosen input value).

76 78 80 82 84√
s [GeV]

−4

−2

0

2

4
×10−11

B̃14[1, 1, 1, 1, 0, 1, 1, 0, 1], cos θ = 0.165

Real part

Imaginary part

−0.2 −0.1 0.0 0.1 0.2
δMW [GeV]
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10−7

∣ ∣ ∣se
ri
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ex

ac
t
−
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Relative error,
√
s = 80.1315 GeV, cos θ = 0.165

8 terms

10 terms

12 terms

15 terms

Obtaining the new grid (say formW = 80.370 GeV) from the old grid (mW = 80.358 GeV) is
almost instantaneous.
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Phenomenology!
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Preliminary results for NC DY!
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Remarks!
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• Precision physics is at the current frontier of particle physics research.
• Precise experimental measurements with precise theoretical predictions, can provide full
understanding of the SM and shed light on BSM physics.

——————————————
• The precision measurement of the EW parameters likemW , sin θW etc. are sensitive to
beyond the SM physics.

• The mixed QCD⊗EW corrections to Drell-Yan production, is going to be a milestone in these
precision measurements. It will be an important ingredient for the future Monte-Carlo
event generators.

——————————————
• Our semi-analytic approach has opened the possibilities to compute more difficult but
important processes;

Thank you for your attention!
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