Frontiers in Particle Physics - 2024

Probing New Physics with JWST observations of high redshift massive galaxies

Priyank Parashari

Based on P. Parashari & R. Laha, MNRAS: Letters, 526, L63–L69 (2023) arXiv: 2305.00999

August 09, 2024

भारतीय विज्ञान संस्थान

Introduction

-
-

Introduction

-
-

James Webb Space Telescope (JWST)

Figure credit: NASA webb

JWST Observations: ΛCDM tension?

- Early data releases of JWST have revealed several high redshift galaxy candidates. (Castellano et al. 2022; Finkelstein et al. 2022; Naidu et al. 2022b; Adams et al. 2023b; Atek et al. 2023; Bouwens et al. 2023a; Donnan et al. 2023; Harikane et al. 2023b; Robertson et al. 2023; Yan et al. 2023))
- A large population of ultra-violet (UV) bright galaxies at $z \ge 10$. (Finkelstein et al. 2023; Harikane et al. 2023b).
- Possible tension with standard galaxy formation models??

Fig credit: Shen et al. MNRAS 525, 3254–3261 (2023)

Early data releases of JWST have revealed several high redshift surprisingly massive galaxy candidates.

- Labbé et al. 2023 have found 13 galaxy candidates $(6.5 \le z \le 9.1)$ using JWST data released within the Cosmic Evolution Early Release Science (CEERS) program.
- Six candidates found to have stellar mass $M_* > 10^{10} M_{\odot}.$

Most of them are observed by photometry and many of them have been confirmed spectroscopically.

JWST Observations: ΛCDM tension?

Early data releases of JWST have revealed several high redshift surprisingly massive galaxy candidates.

- Labbé et al. 2023 have found 13 galaxy candidates $(6.5 \le z \le 9.1)$ using JWST data released within the Cosmic Evolution Early Release Science (CEERS) program.
- Six candidates found to have stellar mass $M_* > 10^{10} M_{\odot}.$

Most of them are observed by photometry and many of them have been confirmed spectroscopically.

JWST Observations: ΛCDM tension?

These JWST observed massive galaxy candidates requires to have a very high star formation efficiency within

JWST Observations: ΛCDM tension?

standard cosmological model. Boylan-Kolchin M., 2023, Nature Astronomy,

Actively debated in the literature and subject to systematic uncertainties (e.g. Larson et al. 2022; Chen, Mo & Wang 2023; Endsley et al. 2023; Prada et al. 2023; Steinhardt et al. 2023).

ΛCDM tension? Hint for new physics?

• Various solutions involving modification on the astrophysical side or beyond standard cosmological

model have been explored.

Early dark energy component (Shen et al. 2023; Boylan-Kolchin 2023), presence of primordial black holes or axion miniclusters (Liu & Bromm 2022; Hütsi et al. 2023; Yuan et al. 2023; Dolgov 2023), fuzzy dark matter & warm dark matter (Gong et al. 2023; [Bin Liu](https://inspirehep.net/authors/1048105) et al. 2024), primordial non-Gaussianity (Biagetti et al. 2023), cosmic strings (Jiao et al. 2023).

Implications: Either the inferred galaxy properties are wrong (systematic or requires modification on the astrophysical side) or there is an issue with our successful standard cosmological model

Halo Mass Function

The halo mass function is defined as the number density of DM haloes per unit mass:

$$
\frac{dn}{d \ln M} = M \frac{\rho_0}{M^2} f(\sigma) \left| \frac{d \ln \sigma}{d \ln M} \right|
$$

$$
f(\sigma) = A \sqrt{\frac{2a}{\pi}} \left[1 + \left(\frac{\sigma^2}{a \delta_c^2} \right)^p \right] \frac{\delta_c}{\sigma} \exp \left[-\frac{a \delta_c^2}{2\sigma^2} \right]
$$

 δ_c = critical overdensity for collapse, $A=0.3222, \, a=0.707, \,$ and $p=0.3$

Where
$$
\sigma^2(R) = \frac{1}{2\pi^2} \int_0^\infty k^2 P(k) W^2(kR) dk
$$
 and $M = \frac{4\pi \rho_0}{3}$

For $f(\sigma)$, we use the Sheth-Tormen fitting function:

Semi-analytical method: We utilise the extended Press–Schechter formalism to compute the statistics of non-linear density field from the linear power spectrum.

Computed using HMF code

Important quantities: Cumulative Comoving Number and Mass Densities & UV luminosity function

The cumulative comoving galaxy number density with stellar masses above some threshold

 M_{*} as

and the corresponding cumulative comoving stellar mass density

- \bullet ϵ is the star formation efficiency, and satisfies $\epsilon \leq 1$
- Exact value depends on star formation physics

UV Luminosity Function: $\Phi_{\text{UV}} = \frac{dn}{m} \frac{dM}{m}$ To compute UV Luminosity function, we need to know the $M_{\text{UV}} - M_{\text{halo}}$ relation.

$$
n_{*}(>M_{*},z)=\int_{M_{\text{halo}}}^{\infty} dM \frac{dn(M,z)}{dM},
$$

$$
\rho_*(>M_*,z)=\epsilon f_b\int_{M_{\text{halo}}}^{\infty} dMM\frac{dn(M,z)}{dM}.
$$

where
$$
M_{\text{halo}} = \frac{M_{*}}{\epsilon f_b}
$$
 and $f_b = \Omega_b / \Omega_m$

$$
\Phi_{\rm UV} = \frac{dn}{dM} \frac{dM}{dM_{\rm UV}}
$$

Modified Primordial Power Spectrum

We study a modified primordial power spectrum where it deviates from the standard primordial power spectrum at small

length scales with a model agnostic form:

$$
P_{\text{prim}}(k) \propto k^{n_s}, \quad \text{for } k < k_p,
$$
\n
$$
\propto k_p^{n_s - m_s} k^{m_s}, \quad \text{for } k
$$

For $m_{_S} > n_{_S}$, the power spectrum will be blue tilted on scales $k > k_{_P}$, and it is red tilted if $m_{_S} < n_{_S}$.

P. Parashari & R. Laha, MNRAS: Letters, 526, L63–L69 (2023) arXiv: 2305.00999

 $> k_p$.

• Blue-tilted primordial power spectrum can reduce the required star formation efficiency.

 $m_{_S} = 2.0$ and $k_{p} = 1~\mathrm{h}\,\mathrm{Mpc}^{-1}$

JWST Observations and Modified Power Spectrum

P. Parashari & R. Laha, MNRAS: Letters, 526, L63–L69 (2023) arXiv: 2305.00999

Computed using modified HMF code

P. Parashari & R. Laha, MNRAS: Letters, 526, L63–L69 (2023) arXiv: 2305.00999

• Required parameter space to reduce this tension may be in conflict with earlier observations.

Computed using modified HMF code

JWST Observations and Modified Power Spectrum

• After our work, Hirano & Yoshida (2023) did simulations with a blue-tilted power spectrum and **found their results consistent with our results**. (arXiv: 2306.11993). Padmanabhan H.

- & Loeb A. (2023) also found similar results arXiv:2306.04684.
- In another work, Sabti et al. (2023) performed an analysis by assuming a Gaussian HST, **which is consistent with our result**. (arXiv: 2305.07049)

enhancement in the power spectrum and found that the enhancement required to explain Labbé et al. (2023) observations will conflict with previous constraints on these scales by

Other Works with JWST Observations and Modified Power Spectrum

JWST observations from the JADES program (spectroscopically confirmed galaxies)

Since a red-tilted primordial power spectrum predicts a smaller cumulative comoving galaxy number density, we can use this observational data to constrain the red-tilt for a given ϵ .

- Recently Curtis-Lake et al. (2022) and Robertson et al. (2023) have reported 4 galaxies from the JADES survey with spectroscopically confirmed redshifts (z > 10).
- Keller et al. (2023) reported the lower limit on cumulative comoving galaxy number density inferred from these observations (Black stars).

Constraints on Power Spectrum

P. Parashari & R. Laha, MNRAS: Letters, 526, L63–L69 (2023) arXiv: 2305.00999

Computed using modified HMF code

we find the most stringent constraint on the matter power spectrum at scales $k \sim 2 - 7\,\rm h\;Mpc^{-1}$.

- JWST has opened up a new window to probe our Universe.
- JWST has already provided exciting and surprising results by observing several surprisingly UV-bright and massive galaxy candidates at high red shifts.
- High star formation efficiency is required to explain these galaxies within standard cosmology.
- •A blue-tiled power spectrum can reduce this tension. However, the required parameter space will conflict with other observations.
- JWST has also reported a few spectroscopically confirmed galaxies. These galaxies can put the stringent constraints on matter power spectrum over scales . *k* ∼ 2 − 7 h Mpc−¹
- •We show the significance of JWST observations as a potential power spectrum probe.

- JWST has opened up a new window to probe our Universe.
- JWST has already provided exciting and surprising results by observing several surprisingly UV-bright and massive galaxy candidates at high red shifts.
- High star formation efficiency is required to explain these galaxies within standard cosmology.
- •A blue-tiled power spectrum can reduce this tension. However, the required parameter space will conflict with other observations.
- JWST has also reported a few spectroscopically confirmed galaxies. These galaxies can put the stringent constraints on matter power spectrum over scales . *k* ∼ 2 − 7 h Mpc−¹
- Thank you! •We show the significance of JWST observations as a potential power spectrum probe.

Outline

- Introduction to standard cosmological model
- Matter power spectrum and halo mass function
- JWST observations of high redshift galaxies
- Modified primordial power spectrum and JWST observations
- Summary

Standard Cosmological Model

Standard Cosmology: Inflation + Λ*CDM*

$$
P_{\text{prim}} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}
$$

- Six parameters model $(\omega_b, \omega_c, \tau_{\text{reio}}, \theta, A_s, n_s)$
- Fits the cosmological observations
- Inflation sets the initial condition for the structure formation.
- The minimal single field inflation models predict a scale invariant primordial power spectrum.

Parameters related to inflation

Figure credit: Planck collaboration

Standard Cosmology: Inflation + Λ*CDM*

$$
P_{\text{prim}} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}
$$

- Six parameters model $(\omega_b, \omega_c, \tau_{\text{reio}}, \theta, A_s, n_s)$
- Fits the cosmological observations
- Inflation sets the initial condition for the structure formation.
- The minimal single field inflation models predict a scale invariant primordial power spectrum.

Planck CMB 2018 contraints: *ns* = 0.9649 ± 0.0042 $A_s = (2.099 \pm 0.102) \times 10^{-9}$

- CMB does not probe all the scales.
- Other observations at different scales is needed to probe power spectrum at all scales.

Figure credit: Planck collaboration

Matter Power Spectrum

- Tiny fluctuations generated during inflation evolves and form the structures that we observe at present.
- The matter power spectrum: defined as the two point correlation function of the density perturbations.

$$
P(k) = P_{\text{prim}}(k)T^2(k)
$$

where $P_{\text{prim}}(k)$ is the primordial power spectrum (depends on inflation model) and $T(k)$ is the transfer function.

Figure credit: D. Gilman et al. (2022) arXiv:2112.03293

Universe Timeline

Figure credit: C09-06-01.3, p.523-686 Proceedings TASI-2009, arXiv:0907.5424

Cumulative Comoving Number and Mass Densities

Let me define the cumulative comoving number density of haloes with masses above some threshold $M_{\rm halo}$ as

and the corresponding cumulative comoving mass density of haloes Ω

$$
n(>M_{\text{halo}}, z) = \int_{M_{\text{halo}}}^{\infty} dM \frac{dr}{m}
$$

$$
\frac{dn(M,z)}{dM},
$$

$$
\rho(>M_{\text{halo}}, z) = \int_{M_{\text{halo}}}^{\infty} dMM
$$

dn(*M*,*z*) *dM* .

- The star formation efficiency, $\epsilon \leq 1$
- Exact value depends on star formation physics

Cumulative comoving galaxy number density:

and cumulative comoving stellar mass density:

$$
\rho_*(>M_*,z)=\epsilon f_b \,\rho(>M_{\text{halo}},z)
$$

$$
n_*(>M_*, z) = n(>M_{halo}, z)
$$
 where stellar mass $M_* = \epsilon f_b M_{halo}$
and $f_b = \Omega_b / \Omega_m$

JWST Observations

- Labbé et al. 2023 have found 13 galaxy candidates $(6.5 \le z \le 9.1)$ using JWST data released within the Cosmic Evolution Early Release Science (CEERS) program.
- They identified these candidates by observing two redshifted breaks in their spectral energy distributions (SEDs): 1. Lyman break (1216 \AA) and 2. Balmer break (3600 \AA).
- Six candidates found to have stellar mass $M_* > 10^{10} M_{\odot}.$

Early data releases of JWST have revealed several high redshift massive galaxy candidates.

Most of them are observed by photometry and some of them have been confirmed spectroscopically.

JWST Observations

Early data releases of JWST have revealed several high redshift massive galaxy candidates.

Most of them are observed by photometry and some of them have been confirmed spectroscopically.

• After our work, Hirano & Yoshida (2023) did simulations with a blue-tilted power spectrum and found their results consistent with our results.

Priyank Parashari & Ranjan Laha, MNRAS: Letters, 526, L63–L69 (2023)

JWST observations and modified power spectrum

- After our work, Hirano & Yoshida (2023) did simulations with a blue-tilted power spectrum and **found their results consistent with our results**. (arXiv: 2306.11993)
- these scales by HST, **which is consistent with our result**. (arXiv: 2305.07049)

• In another work, Sabti et al. (2023) performed an analysis by assuming a Gaussian enhancement in the power spectrum and found that the enhancement required to explain Labbé et al. (2023) observations will conflict with previous constraints on

Other Works with JWST Observations and Modified Power Spectrum