Exploring neutrino masses and mixing in R-Parity Violating supersymmetric models

Arpita Mondal

Department of Physics, Indian Institute of Technology Patna, 801106, India

Frontiers in Particle Physics

9 August, 2024

Outline

- Introduction of Model
- Bilinear RPV SUSY model
 - Neutrino mass generation
 - Observables and constraints
 - Parameters
 - Analysis details
 - Results and discussion
- Trilinear RPV model
 - Parameters
 - Results

Existence of neutrino mass

- Neutrino oscillation → one of the most robust indications towards the existence of physics BSM
- Within Standard Model (SM) framework neutrino is massless → no right handed neutrino
- No neutrino mass from RPC MSSM \rightarrow leads to RPV MSSM

R-parity,
$$R_p = (-1)^{(3B-2L+S)}$$

Neutrino oscillation

- $W_{\mathcal{B}_{p}} = \varepsilon_{i} L_{i} H_{u} + \frac{1}{2} \lambda_{ijk} L_{i} L_{j} \overline{e}_{k} + \lambda_{ijk}' L_{i} Q_{j} \overline{d}_{k} + \frac{1}{2} \lambda_{ijk}'' \overline{u}_{i} \overline{d}_{j} \overline{d}_{k}$
- Two separate analyses lepton number violating Bilinear RPV model and Trilinear RPV model

Bilinear Model definition

Bilinear R-Parity violating Superpotential

Tree and loop level diagrams

- \blacksquare Only one neutrino becomes massive at tree level \rightarrow The highest neutrino mass eigenstate
- BB loop is the dominant one
- Second mass becomes heavy mainly from BB loop
- Lowest mass eigenstate will become heavy from ϵB loop

Grossman and Rakshit, Phys.Rev.D 69 (2004) 093002

Observables

Neutrino observables

- Two mass square splitting values (Δm^2_{21} and Δm^2_{31})
- Three mixing angles ($heta_{12}, heta_{13}, heta_{23}$)

Source: JHEP 02 (2021) 071.

Constraints from Higgs

- Higgs Mass: We have considered ±3 GeV as theoretical uncertainty around 125 GeV. Phys. Rev. Lett. 114 191803 (2015)
- Higgs coupling strength data from LHC at $\sqrt{s} = 13 \text{ TeV} \rightarrow \text{Higgs}$ coupling to Z, W, b, t, μ , τ , and γ particle. CMS-PAS-HIG-19-005, 2020

Constraints from flavor physics

rare
$$b$$
-hadron decays as $\mathcal{B}(B o X_s+\gamma)$ and $\mathcal{B}(B^0_s o \mu^++\mu^-)$ Eur. Phys. J. C 81 226 (2021) and Phys. Rev. Left. 128 041801 (202

Total 15 observables

Parameters

Considered minimal set of parameters

List of fixed parameters	
M_1 = 300 GeV	$M_{\tilde{a}} = 3 \text{ TeV}$
M_2 = 1.2 TeV	$M_{\tilde{i}} = 2$ TeV
M_3 = 3 TeV	$A_{i} = -3.5 \text{ TeV}$
M_A = 3 TeV	$n_t = 0.0$ for

Range of input parameters for scanning

From literature study we came up with some exhaustive range of each parameter such as

$$\begin{array}{l} \mu: 1 \text{ to 3 TeV} \\ \tan\beta: 1 \text{ to 60} \\ \varepsilon_i(i=1,2,3)\text{: -1.0 to 1.0 GeV} \\ B_i(i=1,2,3)\text{: 0.1 GeV to 10 TeV} \\ v_i(i=1,2,3)\text{: 10}^{-8} \text{ to 0.1 GeV} \end{array}$$

So we have total 11 free parameters

Analysis details

- For scanning we use Markov Chain Monte Carlo (MCMC) based likelihood analysis $\rightarrow emcee$ (Publications of the Astronomical Society of the Pacific, 125 306 (2013))
- Ne find the maximum likelihood function $L \propto \exp(-\mathcal{L})$

• Log likelihood
$$\mathcal{L} = \frac{\chi^2}{2} = \frac{1}{2} \sum_{i=1}^{n_{obs}} \left[\frac{\Gamma_i^{obs} - \Gamma_i^{th}}{\sigma_i} \right]^2$$

- lacksquare Maximum likelihood means we find the minimum χ^2
- Degrees of freedom(D.O.F) = 15 independent observables 11 free parameters = 4
- We use a flat prior on all the parameters
- We use 500 walkers and 400 steps for each walker. Total sample generated = $500 \times 400 \times n_{core} = 200000 \times n_{core}$

Results - Normal Hierarchy ($u_3 > u_2 > u_1$)

We have got χ^2_{min} = 3.46
 $\sum m_{
u_i} = 0.059 \text{ eV}
ightarrow$ satisfies $ightarrow \sum m_{
u_i} < 0.12 \text{ eV}$

- Tree level \rightarrow only third neutrino
- BB loop \rightarrow second neutrino
- $\epsilon B \operatorname{loop}
 ightarrow$ first neutrino
- From theory $\tan\beta$ should not be large or very low
- It also depends on the choice of M_A and A_t parameters
- Most stringent limit comes from neutrino oscillation data

Results - Normal Hierarchy ($u_3 > u_2 > u_1$)

Contour plots

- $m_{highest} \propto (\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2) \sin^2 \xi, \xi \text{ represents alignment}$ between ϵ_i and v_i (JHEP 02 (2024) 004)
- \blacksquare Heaviest one is au flavored $ightarrow \epsilon_3$ and v_3 should be largest one
- Also it has next to zero admixture of electron neutrino $ightarrow \epsilon_1$ and v_1 should be lowest one
- $m_2 \propto B_i B_j$ and $m_1 \propto \epsilon_i B_j + \epsilon_j B_i$
- Second one has comparable admixture of all three neutrino flavors \rightarrow nice correlations among B_i parameters

Results - Normal Hierarchy ($u_3 > u_2 > u_1$)

- Loop contributions are already suppressed and $\tan\beta$ is already restricted by tree level mass
- For these contributions to neutrino masses to be significant, the B_i parameters have to be much larger compared to ϵ_i parameters
- ϵB loop contribution is further suppressed due to their dependence on ϵ_i
- As a result, B₁ is expected to be relatively larger than B₂ since the lightest state is dominantly electron neutrino-like
- \blacksquare B_3 will have larger value compared to others

Best-fit point				
ϵ_1 = -0.0072	$v_1 = 0.00038$	<i>B</i> ₁ = 461	μ = 1293	
ϵ_2 = -0.0160	$v_2 = 0.00052$	<i>B</i> ₂ = 198	$ an \beta = 12$	
ϵ_3 = -0.0279	v ₃ = 0.00091	$B_3 = 1760$		
All are in GeV unit except $ aneta$ (JHEP 02 (2024) 004)				

Results - Inverted Hierarchy ($u_2 > u_1 > u_3$)

•
$$\chi^2_{min}$$
 =3.38 and $\sum m_{
u_i}$ = 0.1 eV $ightarrow$ satisfies $ightarrow$ $\sum m_{
u_i}$ $<$ 0.15 eV

- Second one is heaviest \rightarrow an almost equal admixture of all three neutrino flavors
- ϵ_2 and v_2 have largest values
- u_1 is the second heaviest one and have larger values than NH scenario \rightarrow larger B_1 and B_2 values required
- As neutrino oscillation parameters are more constraint in IH scenario → allowed parameter space is also more constraint

Best-fit point				
ϵ_1 = -0.0216	$v_1 = 0.00086$	$B_1 = 894$	μ = 1437	
ϵ_2 = -0.0833	$v_2 = 0.00140$	<i>B</i> ₂ = 982	$ an \beta = 8$	
$\epsilon_3 = -0.0499$	$v_3 = 0.00110$	$B_3 = 1609$		
All are in GeV unit except $ aneta$ (JHEP 02 (2024) 004)				

Results - Inverted Hierarchy ($u_2 > u_1 > u_3$)

$$\ \ \, [m_{\nu}]^{(\varepsilon\varepsilon)}_{ij}\propto \tfrac{1}{\mu\tan^2\beta}$$

 u_3 has lowest mass $\rightarrow \mu$ must have larger value than NH scenario

Contour plots

(IHEP 02 (2024) 004)

Trilinear Model

Superpotential

 λ_{ijk} is antisymmetric ightarrow 9 λ_{ijk} + 27 λ'_{ijk} parameters

Loop diagrams

Due to fermion mass hierarchy, we consider only third generation couplings λ_{i33} and λ'_{i33}

$$\begin{array}{l} \bullet \ M_{\nu} = \frac{1}{8\pi^2 \tilde{m}} [\lambda_{i33} \lambda_{j33} \ m_{\tau}^2 + 3\lambda'_{i33} \lambda'_{j33} \ m_b^2] \\ \bullet \ \text{Leading contribution to heaviest neutrino} \\ m_{\nu_3} = \frac{3m_b^2}{8\pi^2 \tilde{m}} \sum_i {\lambda'}_{i33}^2 \end{array}$$

Parameters space

- we have 2 λ_{i33} (i=1,2) and 3 λ_{i33}^{\prime} (i=1,2,3) parameters
- \blacksquare We also consider μ and aneta as before
- Total 7 parameters
- Ne have added one other observable B
 ightarrow au
 u
- we have 16 observables \rightarrow d.o.f = 9

Range of parameters

$$\begin{split} |\lambda_{i33}|(i=1,2): 0 - 0.001 \ \text{GeV} \\ |\lambda_{i33}'|(i=1,2,3): 0 - 0.001 \ \text{GeV} \\ \mu = 1000 - 3000 \ \text{GeV} \\ \tan\beta = 1 - 60 \end{split}$$

- \blacksquare only $L\!L\!E$ coupling $\to \Delta m^2_{31}$ and θ_{12}
- \blacksquare only $L\!Q\!D$ coupling o can satisfy all except Δm^2_{21}

Results - Normal hierarchy ($\nu_3 > \nu_2 > \nu_1$)

The minimum χ^2 we obtained 4.14 for d.o.f 9

It also satisfies the cosmological bound

Here
$$m_{
u_3}=rac{3m_b^2}{8\pi^2 ilde{m}}\sum_i{\lambda'}_{i33}^2$$

 λ'_{333} must have higher value than others

Second and first neutrinos get masses mostly from λ_{i33} couplings $\rightarrow \lambda_{233}$ coupling must have larger value than λ_{133}

Best-fit point

$\lambda_{133}=1.71 imes10^{-4}$	$\lambda'_{133} = -7.61 imes 10^{-5}$		
$\lambda_{233} = 2.52 imes 10^{-4}$	$\lambda'_{233} = -7.65 imes 10^{-5}$		
$\mu = 1996$	$\lambda'_{333} = -1.34 imes 10^{-4}$		
$\tan \beta = 6.68$			
All parameters are in GeV unit except $ aneta$			

Results - Normal hierarchy

• With the λ_{i33} (i = 1, 2), the bino-type LSP ($\tilde{\chi}_1^0$) decay final states $\rightarrow \tau^{\pm} e^{\mp} \nu$, $\tau^{\pm} \tau^{\mp} \nu$, and $\tau^{\pm} \mu^{\mp} \nu$

- At the best-fit point branching fraction corresponding to λ_{i33} and λ'_{i33} coupling \sim 83% and 17% respectively
- As the coupling values of λ_{i33} are larger than the values of λ'_{i33} , the branching ratio corresponding to the λ_{i33} coupling is also comparatively higher

Results - Inverted hierarchy

- Ninimum χ^2 obtained 4.56 for d.o.f 9
- Second one is the heaviest one $\rightarrow \lambda_{233}$ has the largest value than others
- Third neutrino gets mass from $\lambda'_{i33} \to \lambda'_{333}$ must have higher value and it is lower than NH scenario
- Lowest neutrino eigenstate has mass very close to second one and to get that higher mass we need contribution from both couplings $\to \lambda_{133}$ must have larger value as well as λ'_{133}
- the total branching ratio corresponding to λ_{i33} and λ'_{i33} couplings are 93% and 7% respectively due the larger values of *LLE* type RPV couplings than *LQD* type couplings.

Results - Inverted hierarchy

Best-fit point

The allowed parameter space for IH scenario is more constraint than NH scenario as BRPV model

Conclusion

- We have considered neutrino observables along with recent higgs data and flavor physics data
- We have done two separate analyses for Bilinear RPV and Trilinear RPV model
- To scan the parameter space we have used MCMC based likelihood analysis
- We obtained that the both the models can explain neutrino and other experimental data.
- We have also shown the allowed 1σ and 2σ region for each parameter space along with their correlation
- But the allowed parameter space is tightly constrained

Collider constraints

Gluino search

 \blacksquare Limit is 2.0-2.5 TeV for various couplings $o m_{ ilde{q}}$ = 3 TeV

Squark search

Limit is 0.8-1.9 TeV for different couplings $ightarrow m_{ ilde{q}} =$ 3 TeV (fixed)

Slepton search

 \blacksquare Limit is 0.86-1.2 TeV depending on couplings \rightarrow all the slepton masses fixed at 3 TeV

Chargino search

- We have considered a scenario with bino-type LSP and wino-type NLSP
- $m_{\widetilde{\chi}^0_2}/m_{\widetilde{\chi}^\pm_1}$ excluded upto 1.14 TeV for λ_{i33} coupling
- We consider $m_{\tilde{\chi}_2^0}/m_{\tilde{\chi}_1^\pm}$ masses fixed at 1.2 TeV and $m_{\tilde{\chi}_1^0}$ = 300 GeV

Results with only *LLE* coupling

- \bullet Mass matrix for this model is $M_
 u|_\lambda=rac{1}{8\pi^2 ilde{m}}\,\lambda_{i33}\,\lambda_{j33}\;m_ au^2$
- After diagonalization only third neutrino becomes heavy, $m_{\nu_3} = \frac{m_{\tau}^2}{8\pi^2 \tilde{m}} \sum_{i=1,2} \lambda_{i33}^2$

•
$$\sin \theta_{12} = \frac{\lambda_{133}}{\sqrt{\lambda_{133}^2 + \lambda_{233}^2}}$$

lacksquare This model can satisfy only Δm^2_{31} and $\sin heta_{12}$

Parameter	Value	Observable	Value	χ^2 contribution
λ_{133}	2.76×10^{-4}	Δm_{21}^2	4.15×10^{-13}	1162
λ_{233}	4.06×10^{-4}	Δm_{31}^2	2.56×10^{-3}	0.11
μ	2151	θ_{13}	7.67×10^{-25}	4305
$\tan \beta$	8.02	θ_{12}	34.27	0.001
		θ_{23}	90.0	2659

Results with only LQD couplings

- All Mass matrix for this model $M_
 u|_{\lambda'}=rac{3}{8\pi^2 ilde{m}}\;\lambda'_{i33}\,\lambda'_{j33}\;m_b^2$
- After diagonalization only third neutrino becomes heavy which is already mentioned before

•
$$\sin \theta_{13} = \frac{\lambda'_{133}}{\sum_{i=1,2,3} \lambda'^2_{i33}}$$
 and $\sin \theta_{23} = \frac{\lambda'_{233}}{\sum_{i=2,3} \lambda'^2_{i33}}$

It can satisfy all the observables except Δm^2_{21} which is reflected in the result

Parameter	Value	Observable	Value	χ^2 contribution
λ'_{133}	-6.66×10 ⁻⁵	Δm_{21}^2	6.55×10^{-11}	1162
λ'_{233}	-1.25×10^{-4}	Δm_{31}^2	2.61×10^{-3}	4.0
λ'_{333}	-1.21×10^{-4}	θ_{13}	8.74	2.60
μ	1867	θ_{12}	35.66	1.85
$\tan\beta$	7.73	θ_{23}	48.86	0.25

Trilinear mass matrix

$$\begin{split} M_{ij}^{\nu}|_{\lambda} &= \frac{1}{16\pi^2} \sum_{k,l,m} \lambda_{ikl} \lambda_{jmk} \ m_{e_k} \ \frac{(\tilde{m}_{LR}^{e^2})_{ml}}{m_{\tilde{e}_{Rl}}^2 - m_{\tilde{e}_{Lm}}^2} \ ln\bigg(\frac{m_{\tilde{e}_{Rl}}^2}{m^2 \tilde{e}_{Lm}}\bigg) + (i \leftrightarrow j) \\ M_{ij}^{\nu}|_{\lambda'} &= \frac{3}{16\pi^2} \sum_{k,l,m} \lambda'_{ikl} \lambda'_{jmk} \ m_{d_k} \ \frac{(\tilde{m}_{LR}^{d^2})_{ml}}{m_{d_{Rl}}^2 - m_{d_{Lm}}^2} \ ln\bigg(\frac{m_{d_{Rl}}^2}{m^2 \tilde{d}_{Lm}}\bigg) + (i \leftrightarrow j) \end{split}$$
(1)

$$M_{ij}^{\nu}|_{\lambda} \simeq \frac{1}{8\pi^2} \frac{A^e - \mu \tan \beta}{\bar{m}_{\bar{e}}^2} \sum_{k,l} \lambda_{ikl} \lambda_{jkl} m_{e_k} m_{e_l}$$

$$M_{ij}^{\nu}|_{\lambda'} \simeq \frac{3}{8\pi^2} \frac{A^d - \mu \tan \beta}{\bar{m}_{\bar{d}}^2} \sum_{k,l} \lambda'_{ikl} \lambda'_{jkl} m_{d_k} m_{d_l}$$
(2)

Result - Anomalous muon magnetic moment

- $\Delta a_{\mu} = a_{\mu}^{\text{Exp}} a_{\mu}^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10}$
- Sneutrino-chargino and slepton-neutralino loops contribution
- Lower the smuon masses keeping all other slepton masses decoupled

Input parameters		Output observables			
Parameters	BP-I	BP-II	Output	BP-I	BP-II
M1 (GeV)	128	183	$m_{\tilde{\chi}_1^0}$ (GeV)	125	180
M ₂ (GeV)	1200	1200	$m_{\tilde{\chi}_1^{\pm}}$ (GeV)	1198	1192
$m_{\tilde{\mu}_L}$ (GeV)	120	200	$m_{\tilde{\mu}_1}$ (GeV)	164	224
$m_{\tilde{\mu}_R}$ (GeV)	190	240	$m_{\tilde{\mu}_2}$ (GeV)	175	235
$\tan \beta$	13.75	11.94	$\Delta a_{\mu} (\times 10^{-10})$	25.41	13.52

Table: (JHEP 02 (2024) 004)