SMEFT predictions for flavour physics and effects beyond SMEFT

Siddhartha Karmakar

Tata Institute of Fundamental Research, Mumbai, India

Based on : arXiv:2404.10061 and arXiv: 2305.16007

In collaboration with Prof. Amol Dighe, Susobhan Chattopadhyay, and Dr. Rick S. Gupta.

Frontiers in Particle Physics 2024, CHEP, IISc

Motivation:

Standard Model Effective Field Theory (SMEFT) : $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{SM} + \frac{1}{\Lambda}$ $\frac{1}{\Lambda}C^{(5)}O^{(5)} + \frac{1}{\Lambda^2}$ Λ^2 $\overline{}$ $C_i^{(6)}O_i^{(6)} + \mathcal{O}$

- Includes SM fields only.
- Follows $SU(3)_C \times SU(2)_L \times U(1)_Y$.
- Electroweak (EW) symmetry linearly realized.

Current uncertainties in Higgs coupling measurements allow more generalized EFTs e.g. Higgs Effective Field Therory (HEFT). In HEFT:

- \bullet $SU(2)_L \times U(1)_Y$ non-linearly realized.
- \bullet Higgs boson is not embedded in a $SU(2)_L$ -doublet: \longrightarrow More general coupling of Higgs.
- HEFT ⊃ SMEFT ⊃ SM
- In the energy scale much below the EW symmetry breaking, the relevant EFT is Low Energy Effective Field Theory (LEFT)
- \bullet LEFT can be derived from HEFT by integrating out the heavier particles W^\pm , Z , Higgs and top quark.

i

 $\begin{pmatrix} 1 \end{pmatrix}$ Λ^3 \setminus .

HEFT, SMEFT and LEFT

 \bullet More number of operator in LEFT than in SMEFT \implies relations among LEFT WCs

- \bullet Relations among LEFT WCs \implies indirect bounds
- \bullet Violation of these relations \implies physics beyond SMEFT

SMEFT-predicted relations among LEFT/HEFT Wilson coefficients

SMEFT-predicted constraints on LEFT Wilson coefficients

Violations of SMEFT-predicted relation.

Effects beyonds SMEFT in charged-current semileptonic processes.

Effects beyond SMEFT in neutral-current semileptonic processes.

An example derivation of relations among $U(1)_{em}$ invariant operators:

$$
C_{lq}^{(1)\alpha\beta ij}O_{lq}^{(1)\alpha\beta ij}
$$

=
$$
C_{lq}^{(1)\alpha\beta ij}(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta})(\bar{u}_{L}^{i}\gamma^{\mu}u_{L}^{j} + \bar{d}_{L}^{i}\gamma^{\mu}d_{L}^{j})
$$

Matching among SMEFT and HEFT:

$$
[\mathbf{c}_{\nu u L L}^{V}]^{\alpha \beta ij} = (\frac{[\mathcal{C}_{\ell q}^{(1)}]^{\alpha \beta ij} + [\mathcal{C}_{\ell q}^{(3)}]^{\alpha \beta ij}}{[\mathbf{c}_{\nu d L L}^{V}]^{\alpha \beta ij}}), \quad [\mathbf{c}_{\nu u L L}^{V}]^{\alpha \beta ij} = ([\mathcal{C}_{\ell q}^{(1)}]^{\alpha \beta ij} - [\mathcal{C}_{\ell q}^{(3)}]^{\alpha \beta ij}),
$$

\n
$$
[\mathbf{c}_{\nu d L L}^{V}]^{\alpha \beta ij} = ([\mathcal{C}_{\ell q}^{(1)}]^{\alpha \beta ij} - [\mathcal{C}_{\ell q}^{(3)}]^{\alpha \beta ij}), \quad [\mathbf{c}_{\nu d L L}^{V}]^{\alpha \beta ij} = (\frac{[\mathcal{C}_{\ell q}^{(1)}]^{\alpha \beta ij} + [\mathcal{C}_{\ell q}^{(3)}]^{\alpha \beta ij}}{[\mathbf{c}_{\nu L L}^{V}]^{\alpha \beta ij}}),
$$

$$
uLi \rightarrow SLujuLj , \t uRi \rightarrow SRujuRj ,\n dLi \rightarrow SLdjdLj , \t dRi \rightarrow SRdk ijdRj ,\n VCKM = (SLu)\daggerSLd .
$$

Resulting relations among HEFT LLLL Wilson Coefficients

- These relations are independent of any assumptions for the flavor structure in NP.
- We derive 17 classes of such relations (2223 relations with explicit flavor indices).
- In the scenario when SMEFT only contains four-fermionic operators i.e. the 'UV4f' scenario, the above relations will be applicable for WCs in LEFT as well.

${\sf SMEFT}$ predictions: Indirect bounds on $(\bar{\mu}\gamma^\sigma\mu)(\bar{u}\gamma_\sigma u)$, $(\bar{\nu}\gamma^\sigma\nu)(\bar{d}\gamma_\sigma d)$

SMEFT predictions: Indirect bounds on $(\bar{\nu}\gamma^{\sigma}\nu)(\bar{u}\gamma_{\sigma}u)$

SMEFT predictions: Indirect bounds on $(\bar{\mu}\gamma^{\sigma}\nu)(\bar{u}\gamma_{\sigma}d)$

Indirect bounds on CLI
C

Frontiers in Particle Physics 2024 Siddhartha Karmakar (TIFR) [SMEFT predictions and effects beyond SMEFT](#page-0-0) 9 / 15

- Systematic exploration of SMEFT predictions for all semileptonic operators taking the full expansion of the CKM matrix.
- These prediction are independent of any assumptions about the alignment of the mass and flavor bases for the quarks.
- Implications of the violation of SMEFT predictions:
	- Physics beyond UV4f
	- Large contribution from dimension-8 SMEFT operators
	- Physics beyond SMEFT

$$
\frac{1}{(d\Gamma/dq^2)} \frac{d\Gamma}{dq^2 d\cos\theta_c d\cos\theta_l d\chi}
$$

= $A_0 + A_1 \cos\theta_c + A_2 \cos\theta_l$
+ $A_3 \cos\theta_c \cos\theta_l + A_4 \cos^2\theta_l$
+ $A_5 \cos\theta_c \cos^2\theta_l$
+ $A_6 \sin\theta_c \sin\theta_l \cos\chi$
+ $A_7 \sin\theta_c \sin\theta_l \sin\chi$
+ $A_8 \sin\theta_c \sin\theta_l \cos\theta_l \cos\chi$
+ $A_9 \sin\theta_c \sin\theta_l \cos\theta_l \sin\chi$.

$$
O_V^{LR} \equiv (\bar{\tau}\gamma^\mu P_L \nu_\tau)(\bar{c}\gamma_\mu P_R b)
$$

- Large contribution coming from O_V^{LR} would imply effects beyond SMEFT.
- Our goal is to find angular observables in $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \nu_\tau$ n that can distinguish effects of large O_V^{LR} .

Beyond-SMEFT effects in angular observables in $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \bar{\nu}_{\tau}$

EFT for processes involving $b \rightarrow s\tau\tau$ channel

$$
\mathcal{H}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \bigg(\sum_i C_i O_i + \sum_j C'_j O'_j \bigg) ,
$$

where the scalar and pseudoscalar operators are

$$
O_S^{(\prime)} = \left[\bar{s}P_R(L)b\right]\left[\ell\ell\right], \quad O_P^{(\prime)} = \left[\bar{s}P_R(L)b\right]\left[\ell\gamma_5\ell\right].
$$

SMEFT predictions : $C_S = -C_P$, and $C'_S = C'_P$. Non-SMEFT effect can be parameterized as

$$
\mathcal{C}_S + \mathcal{C}_P \equiv \Delta \mathcal{C} , \quad \mathcal{C}'_S - \mathcal{C}'_P \equiv \Delta \mathcal{C}' .
$$

We consider the following scenarios

- \bullet SM,
- 2 VA: where NP is present only in vector operators,
- **3** SP: where NP is present only in scalar operators with, $\Delta C^{(l)} = 0$
- \bullet $\mathrm{SP:}$ where NP is present only in scalar operators with $\Delta\mathcal{C}^{(\prime)}\neq0$.

Beyond-SMEFT effects in $B\to K^{*0}\tau^+\tau^-$ angular observables

- We find 17 classes (2223 with generation indices) of relations among LEFT WCs based on the $SU(2)_L \times U(1)_Y$ invariance of SMEFT.
- Based on these relations, we find indirect bounds on WCs which are in some cases weakly constrained in direct experiments.
- Violation of these relations implies existence of physics beyond SMEFT.
- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in $\Lambda_b\to\Lambda_c(\to\Lambda\pi)\tau\nu_\tau$ and $B\to K^*\tau^+\tau^$ decay, which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.
- We find 17 classes (2223 with generation indices) of relations among LEFT WCs based on the $SU(2)_L \times U(1)_Y$ invariance of SMEFT.
- Based on these relations, we find indirect bounds on WCs which are in some cases weakly constrained in direct experiments.
- Violation of these relations implies existence of physics beyond SMEFT.
- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in $\Lambda_b\to\Lambda_c(\to\Lambda\pi)\tau\nu_\tau$ and $B\to K^*\tau^+\tau^$ decay, which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.

Thank you for your attention!

Backup: Beyond-SMEFT effects in angular observables in $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \bar{\nu}_{\tau}$

