SMEFT predictions for flavour physics and effects beyond SMEFT

Siddhartha Karmakar

Tata Institute of Fundamental Research, Mumbai, India

Based on: arXiv:2404.10061 and arXiv: 2305.16007

In collaboration with Prof. Amol Dighe, Susobhan Chattopadhyay, and Dr. Rick S. Gupta.

Frontiers in Particle Physics 2024, CHEP, IISc

Motivation:

Standard Model Effective Field Theory (SMEFT) :

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{SM} + \frac{1}{\Lambda} C^{(5)} O^{(5)} + \frac{1}{\Lambda^2} \sum_i C_i^{(6)} O_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right).$$

- Includes SM fields only.
- Follows $SU(3)_C \times SU(2)_L \times U(1)_Y$.
- Electroweak (EW) symmetry linearly realized.

Current uncertainties in Higgs coupling measurements allow more generalized EFTs e.g. **Higgs Effective Field Therory (HEFT)**. In HEFT:

- $SU(2)_L \times U(1)_Y$ non-linearly realized.
- ullet Higgs boson is not embedded in a $SU(2)_L$ -doublet: \longrightarrow More general coupling of Higgs.
- HEFT ⊃ SMEFT ⊃ SM
- In the energy scale much below the EW symmetry breaking, the relevant EFT is Low Energy Effective Field Theory (LEFT)
- LEFT can be derived from HEFT by integrating out the heavier particles W^{\pm} , Z, Higgs and top quark.

HEFT, SMEFT and LEFT

- ullet More number of operator in LEFT than in SMEFT \Longrightarrow relations among LEFT WCs
- Relations among LEFT WCs ⇒ indirect bounds
- Violation of these relations ⇒ physics beyond SMEFT

Outline:

• SMEFT-predicted relations among LEFT/HEFT Wilson coefficients

• SMEFT-predicted constraints on LEFT Wilson coefficients

- Violations of SMEFT-predicted relation.
 - Effects beyonds SMEFT in charged-current semileptonic processes.
 - Effects beyond SMEFT in neutral-current semileptonic processes.

SMEFT predictions for semileptonic processes: Operators and matching

An example derivation of relations among $U(1)_{em}$ invariant operators:

Vector operators $LLLL$ (HEFT)			
	NC	Count	
$[\mathbf{c}_{e_L d_L}^V]^{lphaeta ij}$	$(\bar{e}_L^{\alpha}\gamma_{\mu}e_L^{\beta})(\bar{d}_L^i\gamma^{\mu}d_L^j)$	81 (45)	
$[\mathbf{c}_{euLL}^V]^{lphaeta ij}$	$(\bar{e}_L^{\alpha}\gamma_{\mu}e_L^{\beta})(\bar{u}_L^i\gamma^{\mu}u_L^j)$	81 (45)	
$[\mathbf{c}_{ u dLL}^{V}]^{lphaeta ij}$	$(\bar{\nu}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{d}_L^i\gamma^{\mu}d_L^j)$	81 (45)	
$[\mathbf{c}_{ u u L L}^{V}]^{lpha eta ij}$	$\left (\bar{\nu}_L^{\alpha} \gamma_{\mu} \nu_L^{\beta}) (\bar{u}_L^i \gamma^{\mu} u_L^j) \right $	81 (45)	
	СС		
$[\mathbf{c}_{LL}^V]^{lphaeta ij}$	$(\bar{e}_L^{\alpha}\gamma_{\mu}\nu_L^{\beta})(\bar{u}_L^i\gamma^{\mu}d_L^j)$	162 (81)	

Vector operators $LLLL$ (SMEFT)			
	Operator	Count	
$[\mathcal{C}_{\ell q}^{(1)}]^{lphaeta ij}$	$(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta})(\bar{q}^{i}\gamma^{\mu}q^{j})$	81 (45)	
$[\mathcal{C}_{\ell q}^{(3)}]^{lphaeta ij}$	$\left (\bar{l}^{\alpha}\gamma_{\mu}\tau^{I}l^{\beta})(\bar{q}^{i}\gamma^{\mu}\tau^{I}q^{j}) \right $	81 (45)	

$$\begin{split} &C_{lq}^{(1)\alpha\beta ij}O_{lq}^{(1)\alpha\beta ij}\\ &=C_{lq}^{(1)\alpha\beta ij}(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta})(\bar{u}_{L}^{i}\gamma^{\mu}u_{L}^{j}+\bar{d}_{L}^{i}\gamma^{\mu}d_{L}^{j}) \end{split}$$

Matching among SMEFT and HEFT:

$$\begin{split} & [\mathbf{c}_{\nu uLL}^{V}]^{\alpha\beta ij} = (\frac{[\mathcal{C}_{\ell q}^{(1)}]^{\alpha\beta ij} + [\mathcal{C}_{\ell q}^{(3)}]^{\alpha\beta ij}}{[\mathcal{C}_{\nu uLL}^{V}]^{\alpha\beta ij}}) \;, \quad [\mathbf{c}_{euLL}^{V}]^{\alpha\beta ij} = ([\mathcal{C}_{\ell q}^{(1)}]^{\alpha\beta ij} - [\mathcal{C}_{\ell q}^{(3)}]^{\alpha\beta ij}), \\ & [\mathbf{c}_{\nu dLL}^{V}]^{\alpha\beta ij} = ([\mathcal{C}_{\ell q}^{(1)}]^{\alpha\beta ij} - [\mathcal{C}_{\ell q}^{(3)}]^{\alpha\beta ij}) \;, \quad [\mathbf{c}_{edLL}^{V}]^{\alpha\beta ij} = (\frac{[\mathcal{C}_{\ell q}^{(1)}]^{\alpha\beta ij} + [\mathcal{C}_{\ell q}^{(3)}]^{\alpha\beta ij}}{[\mathcal{C}_{LL}^{V}]^{\alpha\beta ij}}) \;, \\ & [\mathbf{c}_{LL}^{V}]^{\alpha\beta ij} = 2 \, [\mathcal{C}_{\ell q}^{(3)}]^{\alpha\beta ij} \;. \end{split}$$

SMEFT predictions for semileptonic processes: Relations among LEFT WCs

$$\begin{split} \frac{u_L^i \rightarrow S_{L\,ij}^u u_L^j}{d_L^i \rightarrow S_{L\,ij}^d d_L^j} \;, & u_R^i \rightarrow S_{R\,ij}^u u_R^j \;, \\ \frac{d_L^i \rightarrow S_{L\,ij}^d d_L^j}{d_L^i } \;, & d_R^i \rightarrow S_{R\,ij}^d d_R^j \;, \\ V_{\text{CKM}} = (S_L^u)^\dagger S_L^d \;. \end{split}$$

Resulting relations among HEFT LLLL Wilson Coefficients

Category	Analytic relations	Count
	$V_{ik}^{\dagger} \left[\hat{\mathbf{c}}_{euLL}^{V} \right]^{\alpha\beta kl} V_{\ell j} = U_{\alpha\rho}^{\dagger} \left[\hat{\mathbf{c}}_{\nu dLL}^{V} \right]^{\rho\sigma ij} U_{\sigma\beta}$	81 (45)
LLLL	$V_{ik} \left[\hat{\mathbf{c}}_{edLL}^{V} \right]^{\alpha\beta kl} V_{\ell j}^{\dagger} = U_{\alpha\rho}^{\dagger} \left[\hat{\mathbf{c}}_{\nu uLL}^{V} \right]^{\rho\sigma ij} U_{\sigma\beta}$	81 (45)
	$V_{ik}^{\dagger} \left[\hat{\mathbf{c}}_{LL}^{V} \right]^{\alpha\beta kj} = \left[\hat{\mathbf{c}}_{edLL}^{V} \right]^{\alpha\rho ij} U_{\rho\beta}^{\dagger} - U_{\alpha\sigma}^{\dagger} \left[\mathbf{c}_{\nu dLL}^{V} \right]^{\sigma\beta ij}$	162 (81)

- These relations are independent of any assumptions for the flavor structure in NP.
- We derive 17 classes of such relations (2223 relations with explicit flavor indices).
- In the scenario when SMEFT only contains four-fermionic operators i.e. the 'UV4f' scenario, the above relations will be applicable for WCs in LEFT as well.

SMEFT predictions: Indirect bounds on $(\bar{\nu}\gamma^{\sigma}\nu)(\bar{u}\gamma_{\sigma}u)$

SMEFT predictions for semileptonic processes: key points

- Systematic exploration of SMEFT predictions for all semileptonic operators taking the full expansion of the CKM matrix.
- These prediction are independent of any assumptions about the alignment of the mass and flavor bases for the quarks.
- Implications of the violation of SMEFT predictions:
 - Physics beyond UV4f
 - Large contribution from dimension-8 SMEFT operators
 - Physics beyond SMEFT

Identifying effects beyond SMEFT in $b \to c \tau \nu - \tau$ channel

$$O_V^{LR} \equiv (\bar{\tau}\gamma^{\mu}P_L\nu_{\tau})(\bar{c}\gamma_{\mu}P_Rb)$$

- ullet Large contribution coming from O_V^{LR} would imply effects beyond SMEFT.
- Our goal is to find angular observables in $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \nu_\tau$ n that can distinguish effects of large O_V^{LR} .

Beyond-SMEFT effects in angular observables in $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \bar{\nu}_{\tau}$

Identifying effects beyond SMEFT in $b \to s \tau \tau$

EFT for processes involving $b \to s \tau \tau$ channel

$$\mathcal{H}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \left(\sum_i C_i O_i + \sum_j C_j' O_j' \right),$$

where the scalar and pseudoscalar operators are

$$O_S^{(\prime)} = \left[\bar{s}P_R(L)b\right]\left[\ell\ell\right], \quad O_P^{(\prime)} = \left[\bar{s}P_R(L)b\right]\left[\ell\gamma_5\ell\right].$$

SMEFT predictions: $C_S = -C_P$, and $C'_S = C'_P$.

Non-SMEFT effect can be parameterized as

$$C_S + C_P \equiv \Delta C$$
, $C'_S - C'_P \equiv \Delta C'$.

We consider the following scenarios

- SM,
- 2 VA: where NP is present only in vector operators,
- **3** SP: where NP is present only in scalar operators with, $\Delta \mathcal{C}^{(\prime)}=0$
- $\widetilde{\mathrm{SP}}$: where NP is present only in scalar operators with $\Delta \mathcal{C}^{(\prime)} \neq 0$.

Beyond-SMEFT effects in $B \to K^{*0} \tau^+ \tau^-$ angular observables

Summary

- We find 17 classes (2223 with generation indices) of relations among LEFT WCs based on the $SU(2)_L \times U(1)_Y$ invariance of SMEFT.
- Based on these relations, we find indirect bounds on WCs which are in some cases weakly constrained in direct experiments.
- Violation of these relations implies existence of physics beyond SMEFT.
- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in $\Lambda_b \to \Lambda_c(\to \Lambda \pi) \tau \nu_\tau$ and $B \to K^* \tau^+ \tau^-$ decay, which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.

Summary

- We find 17 classes (2223 with generation indices) of relations among LEFT WCs based on the $SU(2)_L \times U(1)_Y$ invariance of SMEFT.
- Based on these relations, we find indirect bounds on WCs which are in some cases weakly constrained in direct experiments.
- Violation of these relations implies existence of physics beyond SMEFT.
- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in $\Lambda_b \to \Lambda_c(\to \Lambda \pi) \tau \nu_\tau$ and $B \to K^* \tau^+ \tau^-$ decay, which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.

Thank you for your attention!

