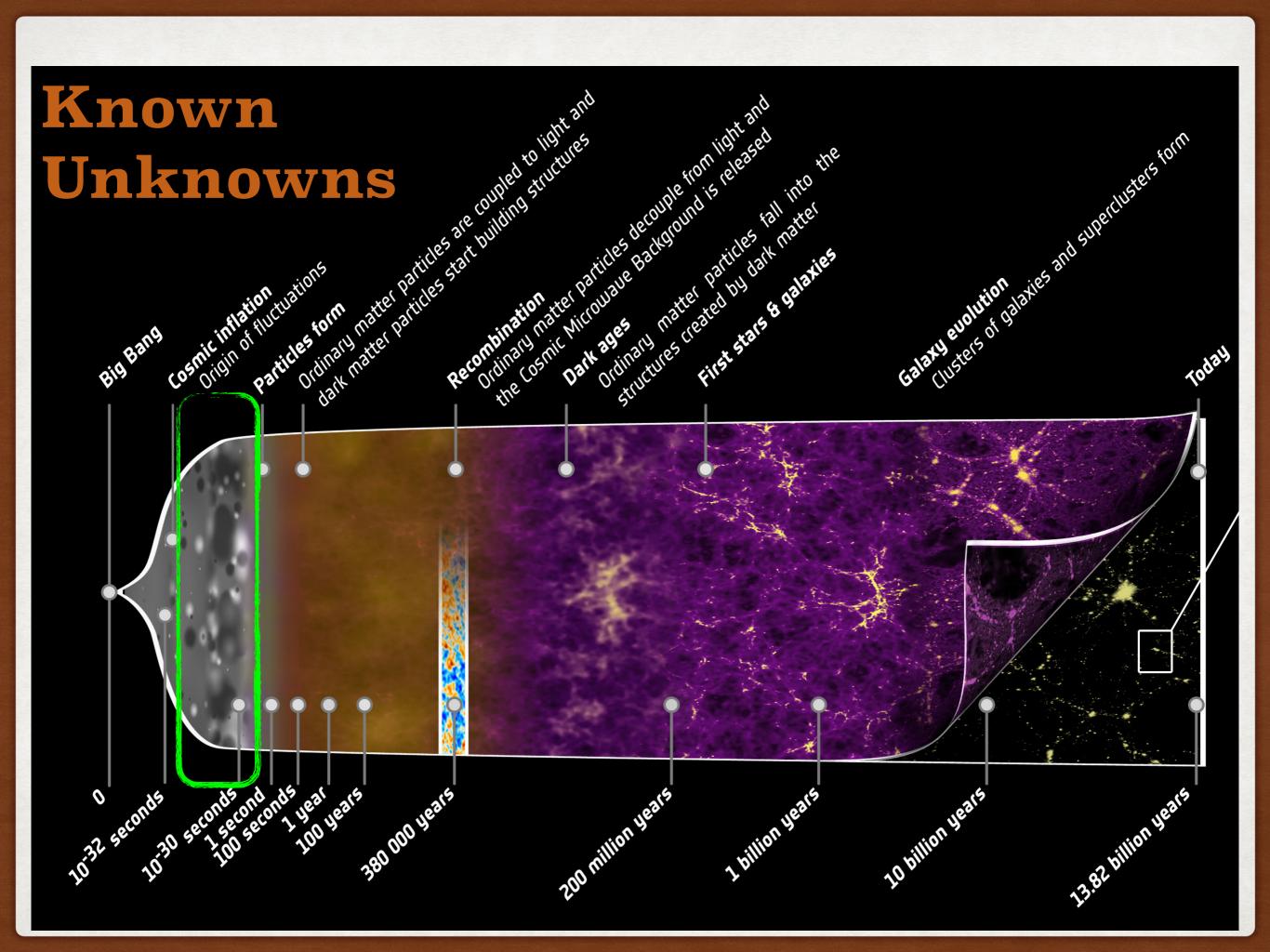
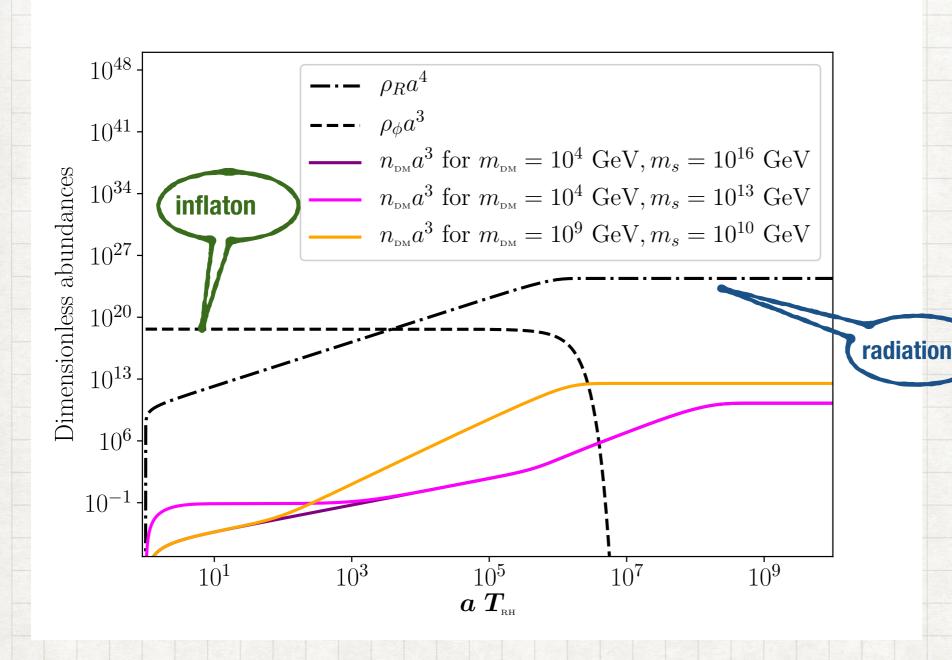
Fingerprints of an early matter-dominated era

Debtosh Chowdhury
IIT Kanpur

FRONTIERS IN PARTICLE PHYSICS 2024 Aug 10, 2024



DM Genesis in the early universe



DM Portals

Spin-2

Spin-1

Spin-1/2 Spin-1/2

Spin-0 Spin-0

[1711.05007;

1803.08064; 1910.06319; 2003.01723;

DC, Dudas, Dutra, Mambrini [1811.01947]

Early Matter Domination

$$\frac{\rho_{\phi}}{\rho_{\gamma}} \propto a$$

 ϕ meta-stable field

BSM candidates of a meta-stable field

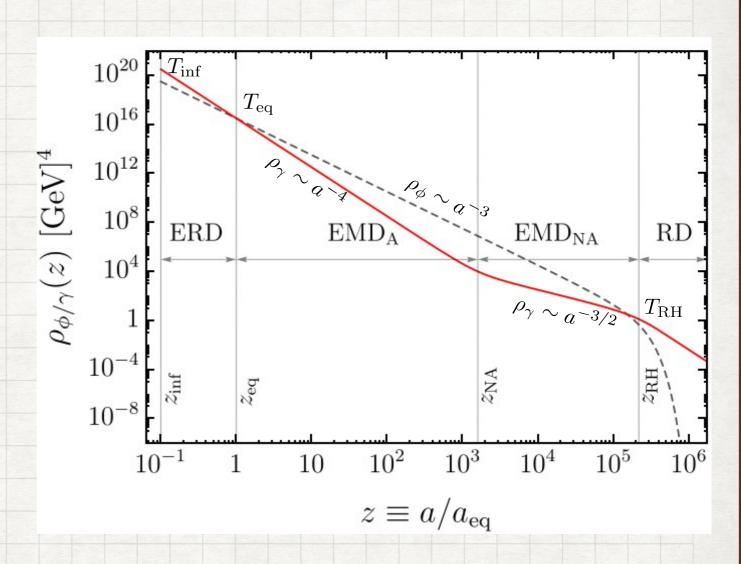
- **Dilaton**
- **▶** Moduli
- **▶** Curvaton ...

[1711.05007; 1803.08064; 1910.06319;

2003.01723;

$\begin{array}{c} \text{Main constraint: $T_{RH} \gtrsim $ few MeV} \\ \text{from BBN} \end{array}$

$$\Gamma_\phi=$$
 Dissipation rate



$$\dot{\rho}_{\phi} + 3(1+\omega)H\rho_{\phi} = -(1+\omega)\Gamma_{\phi}\rho_{\phi}$$

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = (1+\omega)\Gamma_{\phi}\rho_{\phi}$$

$$H = \frac{1}{\sqrt{3}M_{p}}\sqrt{\rho_{\phi} + \rho_{\gamma}}$$

Generalized Dissipation Rate

A generalized dissipation rate depends on temp. and scale factor.

Example: oscillating scalar field ϕ with $V(\phi) \sim \phi^p$ potential

$$\Gamma_{\phi o f ar f} \propto m_\phi(t) \propto a^{-3(p-2)/(p+2)}$$
 Fermionic decay

$$\Gamma_{\phi o\eta\eta}\propto m_\phi^{-1}(t)\propto a^{3(p-2)/(p+2)}$$
 Bosonic decay

$$m_{\phi}(t) \propto \langle \phi(t) \rangle^{(p-2)/2}$$

$$\langle \phi(t) \rangle \sim a^{-6/p+2}$$

[Scherrer, Turner '85; Shtanov et al. '95; Kofman et al. '97; Garcia et al. '12, ...]

Example:
Moduli decay

$$\Gamma_{\phi} \propto rac{T^3}{M_p^2}$$
 [Bodeker '06]

$$\Gamma_{\phi} = \hat{\Gamma} \left(\frac{T}{T_{eq}} \right)^n \left(\frac{a}{a_{eq}} \right)^k$$

More Examples:

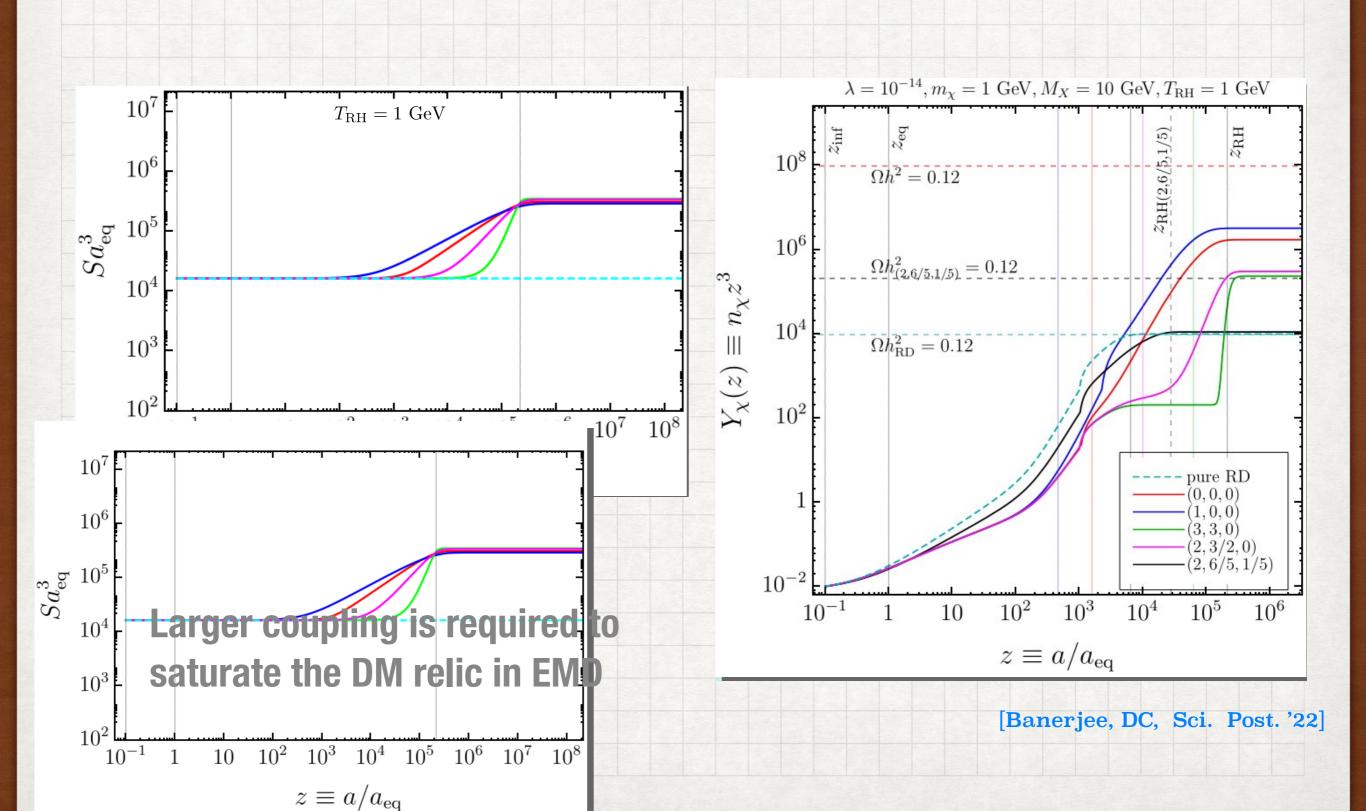
·		
Γ_{ϕ}	(n,k,ω)	T(z) during EMD _{NA}
const.	(0, 0, 0)	decreases with z
T	(1, 0, 0)	decreases with z
$\langle \phi \rangle^{-2}$	(0, 3, 0)	increases with z
$\frac{T^3}{\langle \phi \rangle^2}$	(3, 3, 0)	increases with z
$\frac{T^2}{\langle \phi \rangle}$	(2, 3/2, 0)	remains constant
$\frac{T^2}{\langle \phi \rangle}$	(2,6/5,1/5)	decreases with z

Mukaida et. al. 1208.3399, 1212.4985

Drewes, 1406.6243

Co et. al. 2007.04328

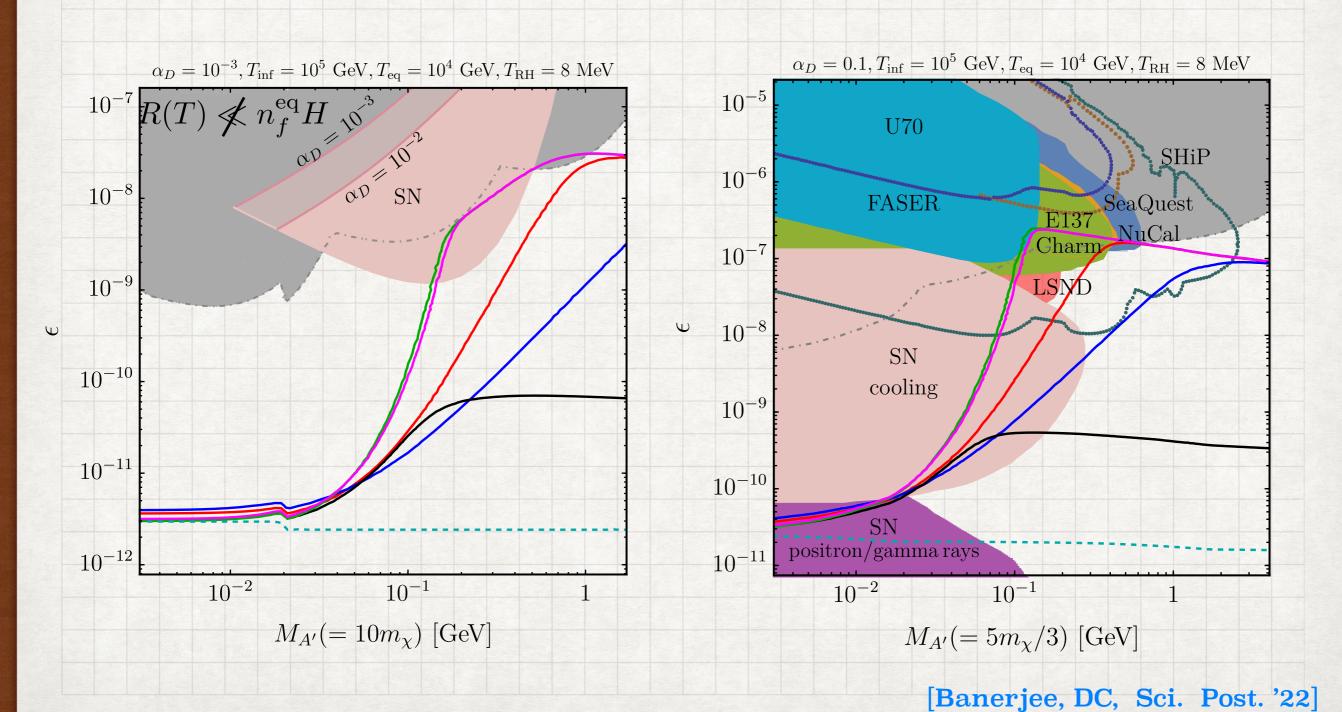
Freeze-in DM in an EMD era



Dark Photon Portal DM

Sci Post

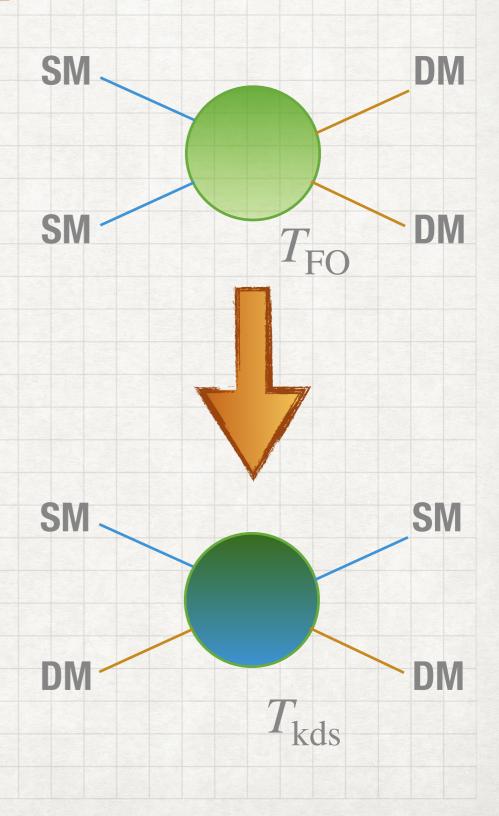
$$\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{1}{2}M^{2}_{A'}A'_{\mu}A'^{\mu} + \bar{\chi}\left(i\partial \!\!\!/ - m_{\chi}\right)\chi + g_{D}\bar{\chi}\gamma^{\mu}A'_{\mu}\chi$$



What are the signatures of an EMDE?

DM Thermal decoupling in RD

- In the standard RD epoch, DM decouples first chemically the plasma: $\chi\chi\to BB$
- After this, DM kinetically decouples from the plasma: $\chi B \rightarrow \chi B$
- **▶**Then DM free streams.



DM thermal decoupling in EMDE

- In an EMD: kinetic decoupling is determined by how the elastic scattering XS and Hubble vary with the plasma temperature.
- ightharpoonup Reheating initiates when $\Gamma_{\phi} > H$.
- For constant Γ_{ϕ} : $T \propto a^{-3/8}$, and $H \propto T^4$.
- For s-wave elastic scattering,

$$\langle \sigma v
angle_{
m el} \sim {
m const},$$
 $\gamma_{
m el} \sim T^4 {
m and} ~ H \propto T^4.$

As a result, DM cannot kinetically decouple before the onset of RD.

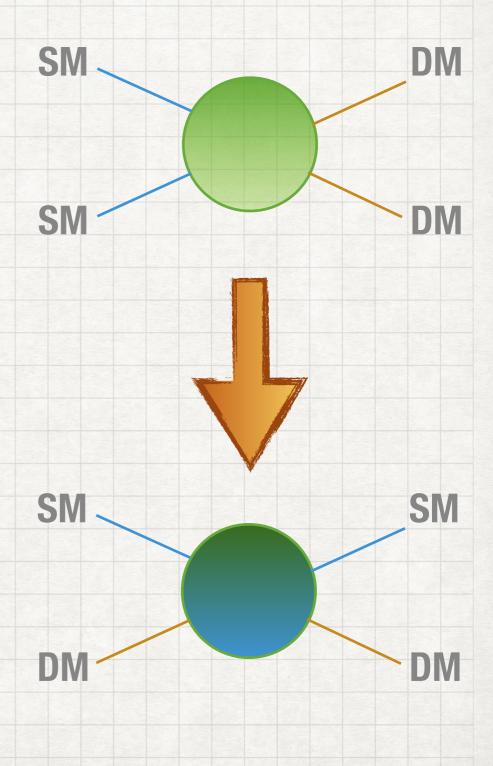
SM SM SM SM

[Gelmini et al. '08, Visinelli et al. '15, Waldstein et al. '16, Erickcek et al. '11, '15]

DM thermal decoupling in EMDE

- **For p-wave elastic scattering,** $\langle \sigma v \rangle_{\rm el} \sim T^2$
 - $\gamma_{\rm el} \sim T^6$ and $H \propto T^4$
- DM kinetically decouples partially, before the onset of RD.
- ▶ As a result, DM cools faster than the plasma during EMDE.
- Due to this, the free-streaming horizon reduces in EMDE compared to the standard RD scenario.
- **▶** Small-scale structure are formed due to the scales entering the horizon before RD.

[Gelmini et al. '08, Visinelli et al. '15, Waldstein et al. '16, Erickcek et al. '11, '15]



DM thermal decoupling in EMDE

- \blacktriangleright Entropy injection during the EMDE depends on the plasma temperature: $\Gamma_{\phi} \sim T$
- ▶ In this case: $T \propto a^{-1/2}$, and $H \propto T^3$.
- As a result, the s-wave scattering is enough to partially decouple the DM from the plasma.
- ▶ Whereas, p-wave scattering fully decouples it from the plasma before the onset of RD.
- Such extra cooling of the DM receives an extra kick from the enhanced matter perturbations during EMDE.
- **▶** As a result, a boost in the formation of structures at sub-earth scales.

Kinetic decoupling of DM

Standard RD scenario:

$$T_{\chi}(t) \equiv \frac{g_{\chi}}{3n_{\chi}} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{E} f_{\chi}(\mathbf{p}, t)$$

$$\frac{dT_{\chi}}{d\ln a} + 2T_{\chi}(a) \left[1 + \frac{\gamma_{\rm el}(a)}{H(a)} \right] = 2\frac{\gamma_{\rm el}(a)}{H(a)} T(a)$$

$$\gamma_{\rm el}(T) \ll H(T)$$
 $\gamma_{\rm el}(T)T \ll H(T)T_{\chi}$

$$T_{\chi} \sim a^{-2}$$

$$T \sim a^{-1}$$

Non-standard scenario:

$$T \sim a^{-\alpha} H \sim T^{\beta} \gamma_{\rm el}(T) \propto T^{(4+n)} \gamma_{\rm el}(T_{
m dec}) = H(T_{
m dec})$$

$$T_{\chi}(a) \simeq rac{T_{
m dec}}{2-lpha(5+n-eta)} \left[2\left(rac{a}{a_{
m dec}}
ight)^{-lpha(5+n-eta)} - lpha(5+n-eta) \left(rac{a}{a_{
m dec}}
ight)^{-2}
ight] \qquad \gamma_{
m el}(T) \ll H(T) \ \gamma_{
m el}(T) T
ot \langle H(T) T \rangle$$

Kinetic decoupling of DM

Non-standard scenario:

$$T \sim a^{-\alpha} \quad H \sim T^{\beta} \quad \gamma_{\rm el}(T) \propto T^{(4+n)}$$

$$T_{\chi}(a) \simeq \frac{T_{\text{dec}}}{2 - \alpha(5 + n - \beta)} \left[2\left(\frac{a}{a_{\text{dec}}}\right)^{-\alpha(5 + n - \beta)} - \alpha(5 + n - \beta)\left(\frac{a}{a_{\text{dec}}}\right)^{-2} \right]$$

 $n \leq n_{\rm dec}$:

 $n_{\text{dec}} < n < n_{\text{partial}}$:

 $n > n_{\text{dec}}$ and $n \ge n_{\text{partial}}$:

no kinetic decoupling, partial kinetic decoupling, full kinetic decoupling,

$$n_{
m partial} \equiv (2/\alpha) + \beta - 5.$$
 $n_{
m dec} < \beta - 4$

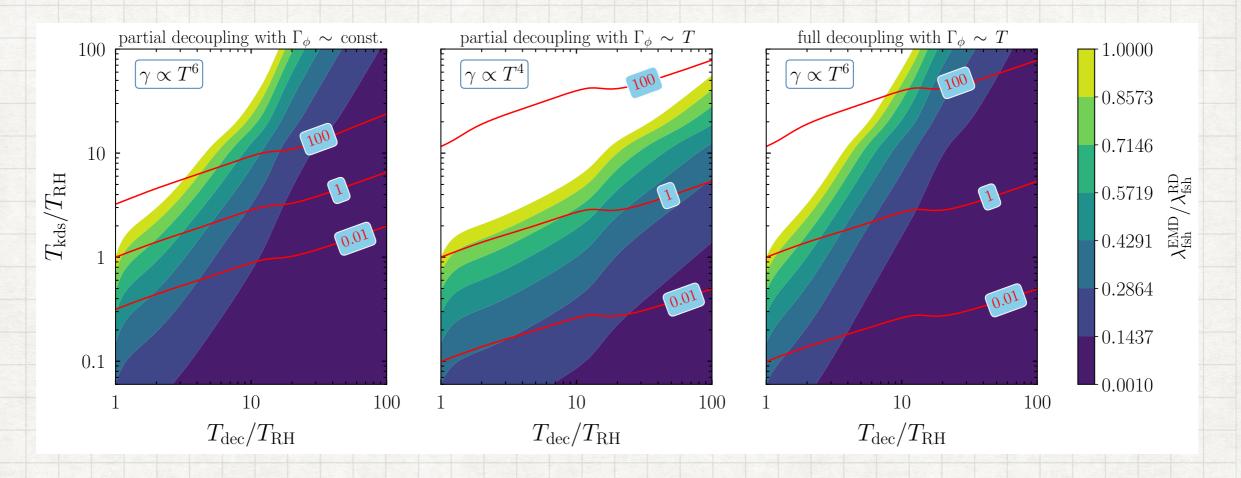
During entropy injection:

$$\Gamma_{\phi} \propto a^k T^n$$

ϕ domination	k	m	α	Conditions for kinetic decoupling			
				$n_{ m dec}$	$n_{ m partial}$	s-wave	p-wave
$\omega_{\phi} = 0$ (Matter)	0 0	0 1	$\frac{3/8}{1/2}$	0 -1	13/3	– partial	partial full
$\omega_{\phi} = 1/3$ (Radiation)	-1 1 1	0 0 2	3/4 $1/4$ $1/2$	-4/3 4 0	1/3 11 3	partial - -	full – partial

[Banerjee, DC, Hait, Islam, 2408.xxxx]

Kinetic decoupling of DM

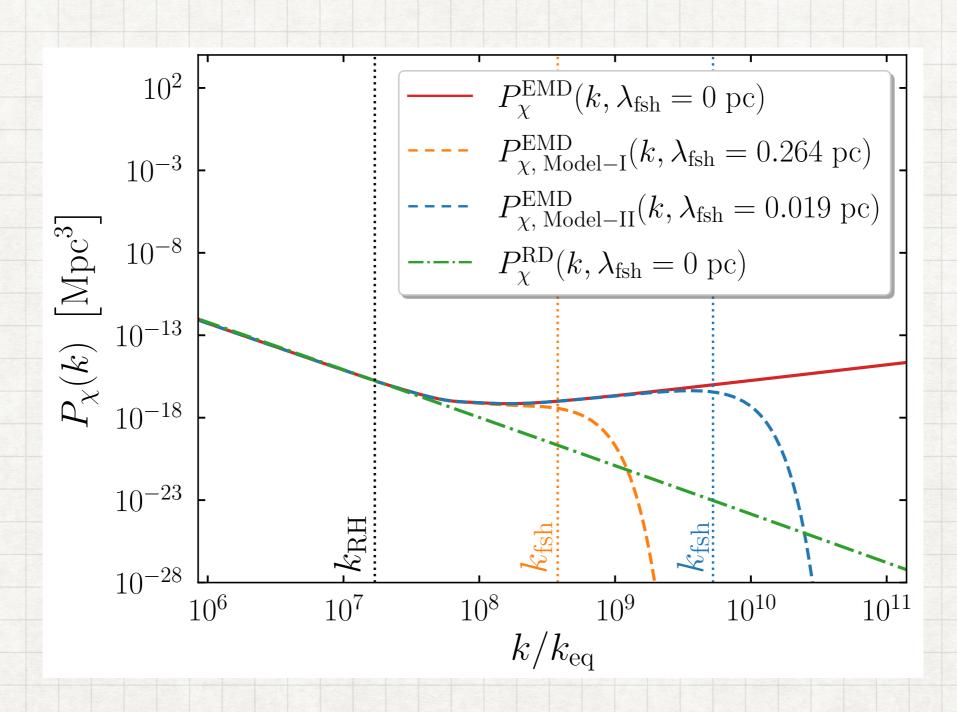


$$\lambda_{\rm fsh}^{\rm EMD} = \int_{t_{\rm dec}}^{t_0} dt \, \frac{v_{\chi}(t)}{a(t)} = \sqrt{\frac{3}{m_{\chi}}} \left[\int_{a_{\rm dec}}^{a_{\rm RH}} + \int_{a_{\rm eq}}^{a_{\rm eq}} + \int_{a_{\rm eq}}^{a_0} \right] da \frac{\sqrt{T_{\chi}(a)}}{a^2 H(a)} \,, \quad \begin{cases} T \sim a^{-\alpha}, \\ H \sim T^{\beta}, \end{cases}$$

$$\lambda_{\rm fsh}^{\rm RD} = \int_{t_{\rm kds}}^{t_0} dt \, \frac{v_{\chi}(t)}{a(t)} = \sqrt{\frac{3}{m_{\chi}}} \left[\int_{a_{\rm kds}}^{a_{\rm eq}} + \int_{a_{\rm eq}}^{a_0} \right] da \, \frac{\sqrt{T_{\chi}(a)}}{a^2 H(a)} \,, \qquad \begin{cases} T \sim a^{-1}, \\ H \sim T^2. \end{cases}$$

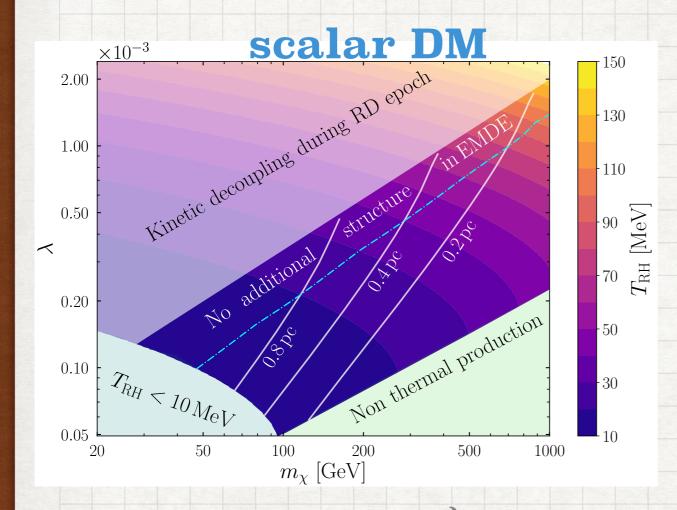
[Banerjee, DC, Hait, Islam, 2408.xxxx]

Matter power spectrum



0.0020 50 200 100 $m_{\chi} [{\rm GeV}]$

Case Studies

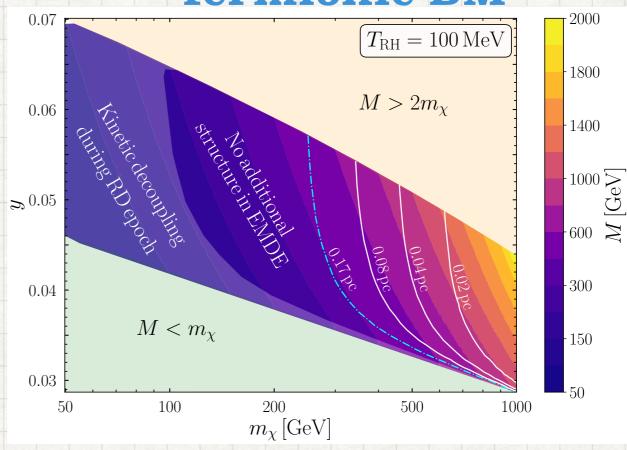


s-wave elastic scattering
$$\mathcal{L}\supset \frac{\lambda}{4}\phi_\chi^2\varphi_\gamma^2$$

$$\gamma_{\rm el}(T) = rac{\lambda^2 \pi}{180} m_\chi \left(rac{T}{m_\chi}
ight)^4$$

fermionic DM

500



p-wave elastic $\mathcal{L} \supset y\psi_{\chi}\psi_{\gamma}\varphi_{M}$ scattering

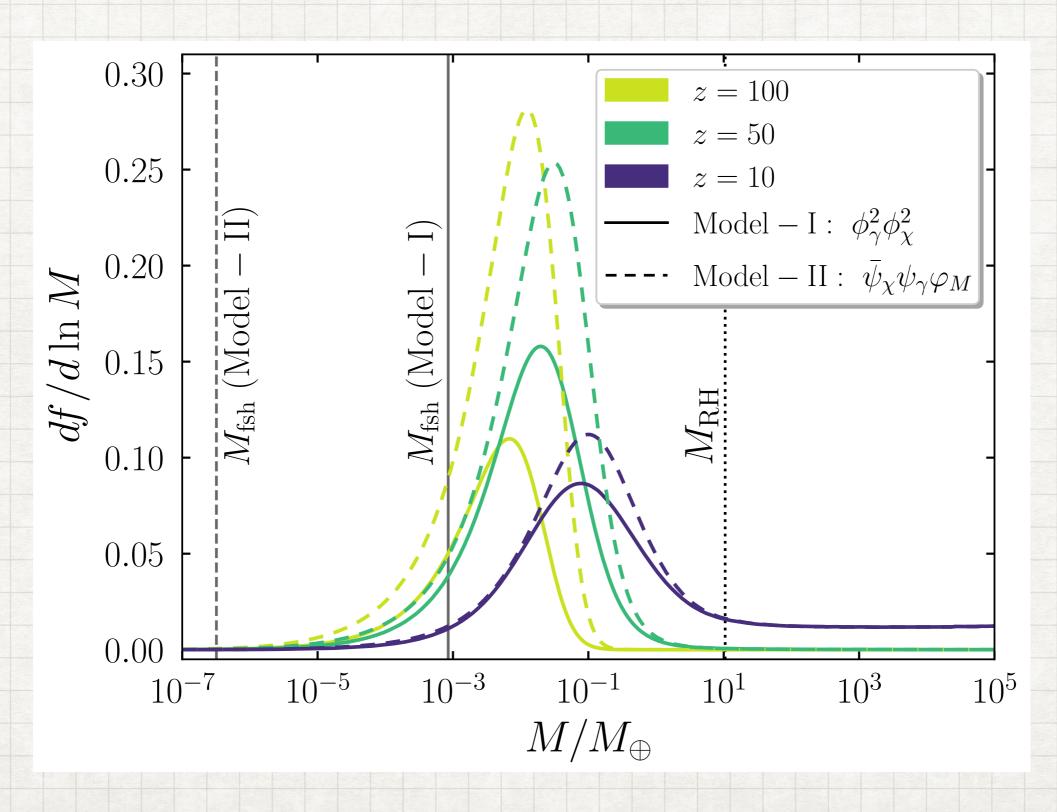
$$\gamma_{\rm el}(T) = rac{341}{756} \pi^3 \, y^4 rac{m_\chi^3}{(M - m_\chi)^2} \left(rac{T}{m_\chi}
ight)^6$$
 $m_\chi < M \le 2m_\chi$

[Banerjee, DC, Hait, Islam, 2408.xxxx]

Thank You!

Back-up

Halo mass fraction



Generalized Dissipation Rate

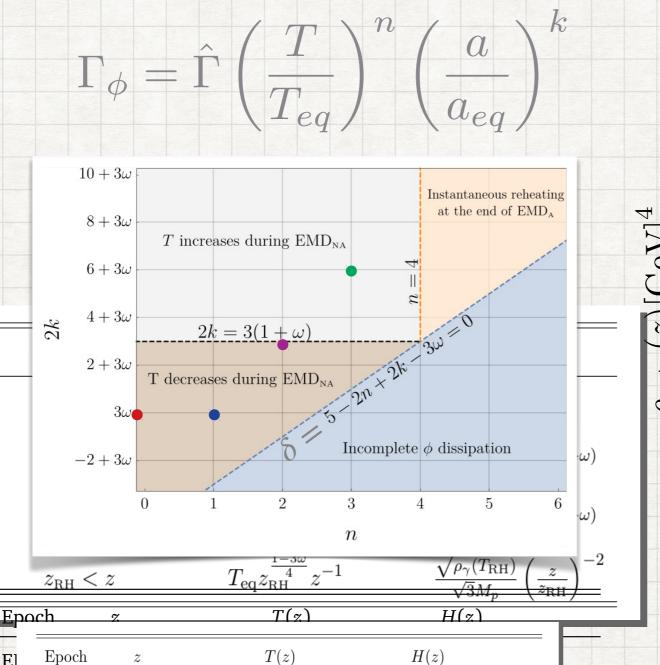
-w)

+ω)

 10^{20}

 10^{16}

 10^{12}



Epoch

ERD

 EMD_A

 EMD_{NA}

ERD

 $\mathrm{EMD}_{\mathrm{A}}$

 $\mathrm{EMD}_{\mathrm{NA}}$

El

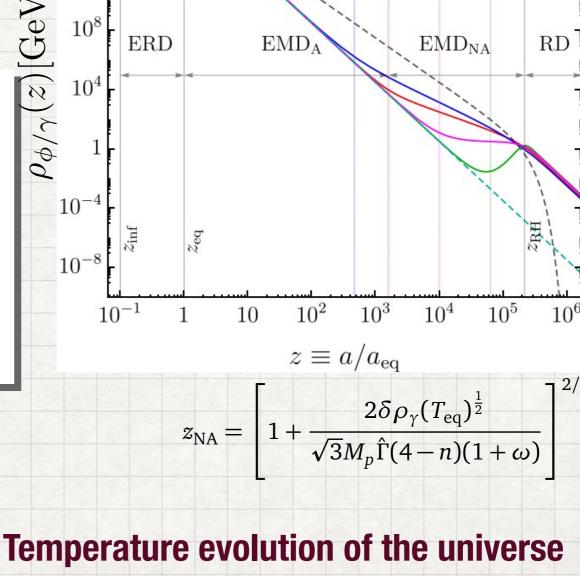
R

 $z_{\rm inf} < z < 1$

 $1 < z < z_{\rm NA}$

 $z_{\rm NA} < z < z_{\rm RH}$

RD



depends on the dissipation rate.

[Banerjee, DC, Sci. Post. '22]

pure RD (0,0,0)(1,0,0)

(3, 3, 0)(2, 3/2, 0)

RD

Freeze-in DM in an EMD era

 $\frac{dY_{\chi}(z)}{dz} = \frac{z^2 R(T(z))}{H(z)}$

- DM yield dilutes due to entropy production
- Non-standard T(z) and H(z) evolution alters the DM production during the non-adiabatic phase of EMD

$$\frac{\Omega_{\chi}h^{2}}{\Omega_{\chi}h_{\rm RD}^{2}} = \frac{Y_{\chi}(z_{0})}{Y_{\chi}^{\rm RD}(z_{0})} \left(\frac{z_{0}^{\rm RD}}{z_{0}}\right)^{3} = \frac{Y_{\chi}(z_{0})}{Y_{\chi}^{\rm RD}(z_{0})} \left(\frac{T_{\rm RH}}{T_{\rm eq}}\right)^{\frac{1-3\omega}{1+\omega}} \sim 10^{-2} - 10^{-3}$$

$$z_0 = (T_{\rm eq}/T_0)(T_{\rm RH}/T_{\rm eq})^{\frac{(3\omega-1)}{3(1+\omega)}}$$

$$\rho_{\phi}(z) \simeq \rho_{\gamma}(T_{\rm eq})z^{-3(1+\omega)},$$

$$\rho_{\gamma}(z) = z^{-4} \left[\rho_{\gamma}(T_{\text{eq}})^{\frac{4-n}{4}} + \frac{\sqrt{3}M_{p}\hat{\Gamma}(4-n)(1+\omega)}{2\delta\rho_{\gamma}(T_{\text{eq}})^{\frac{(n-2)}{4}}} (z^{\delta/2} - 1) \right]^{\frac{4}{4-n}}$$

Sci Post

$$z_{\text{NA}} = \left[1 + \frac{2\delta \rho_{\gamma} (T_{\text{eq}})^{\frac{1}{2}}}{\sqrt{3} M_{p} \hat{\Gamma}(4-n)(1+\omega)}\right]^{2/\delta}$$

$$z_{
m RH} = \left[rac{2\delta
ho_{\gamma} (T_{
m eq})^{rac{1}{2}}}{\sqrt{3} M_p \hat{\Gamma}(4-n)(1+\omega)}
ight]^{rac{4}{2\delta - (4-n)(1-3\omega)}} = \left(rac{T_{
m RH}}{T_{
m eq}}
ight)^{-rac{4}{3(1+\omega)}}$$

$$z_0 = (T_{\rm eq}/T_0)(T_{\rm RH}/T_{\rm eq})^{\frac{(3\omega-1)}{3(1+\omega)}}$$

