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DC, Dudas, Dutra, Mambrini [1811.01947]

DM Genesis in the early universe

DM Portals 
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[1711.05007; 
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1910.06319; 
2003.01723; …. ]



Early Matter Domination
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Early matter domination

BSM motivations for EMD

● Meta-stable matter 4elds 
● Oscillating scalar 4elds 
● Moduli
● SUSY condensates
● Dilaton
● Q-balls
● Curvaton

Evolution is dependent on the dissipation rate

Constraints from BBN:

See also, talk by Catarina Cosme
(neutrino session)

1711.05007,1803.08064,1910.06319,2003.01723...
vast literature on eAect of EMD on DM production
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/ a ϕ meta-stable field

BSM candidates of a meta-stable 
field 

 Dilaton 
 Moduli  
 Curvaton …

Main constraint: TRH   few MeV 
           from BBN

≳

Γϕ = Dissipation rate

[1711.05007; 1803.08064; 1910.06319; 
2003.01723; …. ]



Generalized Dissipation Rate

 Example: 
  oscillating scalar field  with          
potential 

ϕ V(ϕ) ∼ ϕp
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m�(t) / h�(t)i(p�2)/2
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h�(t)i ⇠ a�6/p+2

[Scherrer, Turner ’85;  Shtanov et 
al. ’95; Kofman et al. ’97; Garcia et 
al. ’12, …]

 Example: 
Moduli decay
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[Bodeker ’06]

A generalized dissipation rate depends on temp. and scale factor.
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Matter dissipation rate

In general depends on the temperature and the expansion of the universe

Oscillating scalar 4elds 
with        potential

Moduli decay:

Examples: More Examples:

Bodeker, hep-ph/0605030

Garcia et. al. 2012.10756
See talk by Keith Olive

Mukaida et. al. 1208.3399, 1212.4985
Drewes, 1406.6243

Co et. al. 2007.04328

Fermionic decay

Bosonic decay
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Freeze-in DM in an EMD era

  7

Freeze-in DM yield during EMD

Larger coupling is required to saturate 
freeze-in relic in presence of EMD epoch

● DM yield dilutes due to entropy 
production

● Non-trivial temperature evolution 
also changes the DM production rate 
during non-adiabatic EMD

AB, D Chowdhury, 2204.03670
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Freeze-in DM yield during EMD

Larger coupling is required to saturate 
freeze-in relic in presence of EMD epoch

● DM yield dilutes due to entropy 
production

● Non-trivial temperature evolution 
also changes the DM production rate 
during non-adiabatic EMD

AB, D Chowdhury, 2204.03670

[Banerjee, DC,  Sci.  Post. ’22]

Larger coupling is required to 
saturate the DM relic in EMD
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Dark photon portal

Parameter space staisfying observed relic is accessible to experiments
in the presence of an early matter dominated era

Freeze-in condition

AB, D Chowdhury, 2204.03670

Dark Photon Portal DM

[Banerjee, DC,  Sci.  Post. ’22]

SciPost Phys. 13, 022 (2022)

Figure 3: The contours satisfying ⌦�h2 = 0.12 are shown for MA0 = 10m� (left
panel) and MA0 = 5m�/3 (right panel). The dark grey region is not accessible for
the freeze-in production as the condition R(T )/neq

f H ⌧ 1 is violated and as a conse-
quence DM comes in thermal equilibrium with the visible matter. The color coding
for different ⌦�h2 contours are same as in Fig. 2. In the left panel, we overlap the
supernova cooling constraints [98] in the presence of non-zero branching ratios for
the decay of dark photon into dark matter. On the other hand, in right panel the
existing constraints from different beam dump experiments [99–104], supernova
bounds [98, 105, 106] and the projected bounds for future experiments like SHiP,
FASER, and SeaQuest [107–110] are superimposed assuming the dark photon de-
cays into SM particles only.

As a consequence, all the contours satisfying ⌦�h2 = 0.12 roughly overlap with the RD case
in that region of the parameter space.

When MA0 < 2m� , A0µ decay to dark matter is kinematically suppressed. For an ultralight
dark photon with MA0 ⌧ m� , the DM behaves as a millicharged particle which has been dis-
cussed in [30, 111, 112]. Here instead, we focus on the mass range m� < MA0 < 2m� , where
f f̄ ! A0⇤ ! ��̄ still dominates the DM production. In this case, we plot in the right panel of
Fig. 3, the contours satisfying⌦�h2 = 0.12 assuming MA0 = 5m�/3, ↵D = 0.1 and TRH = 8 MeV.
The constraints on the kinetic mixing parameter from supernova cooling [98,105,106] as well
as several beam dump experiments [99–104] rule out a significant region of the parameter
space with sub-GeV masses. Moreover, future experiments like SHiP [107,108,110] will also
probe a large part of the parameter space untouched by the current generation experiments.
Similar to the left panel of Fig. 3, the grey shaded area in the right panel shows the region
where the freeze-in condition, R(T )/neq

f H ⌧ 1, for the DM production via f f̄ ! A0⇤ ! ��̄
process is violated. However, in this case we need to consider additional constraint on the ki-
netic mixing parameter to ensure that the dark photon, produced via inverse decay processes
SM+ SM ! A0µ, can not achieve thermal equilibrium. To this end, we compare the inverse
decay rate Rinv(T ) to the Hubble expansion rate (Rinv(T ) ⌧ neq

SMH). As a consequence, one
can safely neglect other DM production channels such as A0µ + A0⌫ ! � + �̄ . We observe that
this condition does not rule out any additional parameter space which was untouched by the
grey area or the existing observations.
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What are the signatures 
of an EMDE?



DM Thermal decoupling in RD

 In the standard RD epoch, DM 
decouples first chemically the 
plasma:     

 After this, DM kinetically decouples 
from the plasma:      

Then DM free streams.

χχ → BB

χB → χB

SM

SM

DM

DM

SM

DM

SM

DM

TFO

Tkds

TFO > Tkds



DM thermal decoupling in EMDE
 In an EMD: kinetic decoupling is 
determined by how the elastic 
scattering XS and Hubble vary with 
the plasma temperature.  

 Reheating initiates when  
  
 For constant                                            

 For s-wave elastic scattering, 
, 

 

 As a result, DM cannot kinetically 
decouple before the onset of RD. 

Γϕ > H .

Γϕ :

⟨σv⟩el ∼ const

SM

SM

DM

DM

SM

DM

SM

DM
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�el ⇠ T
4 and H / T

4
.

[Gelmini et al. ’08, Visinelli et 
al. ’15, Waldstein et al. ’16, 
Erickcek et al. ’11, ’15]



DM thermal decoupling in EMDE

SM

SM

DM

DM

SM

DM

SM

DM

 For p-wave elastic scattering,  

 DM kinetically decouples partially, before the 
onset of RD. 

 As a result, DM cools faster than the plasma 
during EMDE. 

 Due to this, the free-streaming horizon 
reduces in EMDE compared to the standard RD 
scenario. 

 Small-scale structure are formed due to the 
scales entering the horizon before RD.

⟨σv⟩el ∼ T2
<latexit sha1_base64="Yha+v4vcdp0rdr41QnZkvzbFOq0="></latexit>

�el ⇠ T
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[Gelmini et al. ’08, Visinelli et 
al. ’15, Waldstein et al. ’16, 
Erickcek et al. ’11, ’15]



DM thermal decoupling in EMDE

 Entropy injection during the EMDE depends on the plasma 
temperature:  

 In this case: 
  
 As a result,  the s-wave scattering is enough to partially decouple the 
DM from the plasma.  

 Whereas, p-wave scattering fully decouples it from the plasma before 
the onset of RD. 

 Such extra cooling of the DM receives an extra kick from the enhanced 
matter perturbations during EMDE. 

 As a result, a boost in the formation of structures at sub-earth scales.

Γϕ ∼ T
<latexit sha1_base64="Ye0LybhaVWs6J0nlIpwwDrTiEiM="></latexit>
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Kinetic decoupling of DM

perturbations during the EMDE and formation of sub-earth mass halos. Two simple models
featuring a scalar and a fermionic dark matter which exhibit s-wave and p-wave scatterings,
respectively, and decouple during the EMDE are explored as case studies in Sec. 4. We
conclude in Sec. 5.

2 Partial kinetic decoupling of dark matter

We briefly review the general formalism to study the decoupling of DM in di↵erent thermal
histories of the universe. We assume that the DM chemically decouples from the thermal
bath at the freeze-out temperature (Tfo ⇠ m�/20), while still remaining kinetically coupled to
the plasma. The Boltzmann equation governing the evolution of the phase space distribution
of the DM (f�(p, t)) is given by [99, 100]

E (@t � Hp · rp) f�(p, t) = Cann[f�] + Cel[f�] , (2.1)

where Cann[f�] and Cel[f�] denote the collision terms corresponding to the annihilation (�� !
BB) and the elastic scatterings (�B ! �B) of the DM with the bath particles (B), respec-
tively. The number density (n�) and the temperature (T�) of the DM are defined by taking
the second and third moments of the phase space distribution as [78, 101]

n�(t) ⌘ g�

Z
d
3
p

(2⇡)3
f�(p, t) , and T�(t) ⌘ g�

3n�

Z
d
3
p

(2⇡)3
p
2

E
f�(p, t) , (2.2)

where p ⌘ |p| and g� denotes the number of internal degrees of freedom of �. The evolution
of n�(t) is obtained by integrating both sides of Eq. (2.1) as

dn�

dt
+ 3Hn� = g�

Z
d
3
p

(2⇡)3
Cann[f�]

E
= �h�viann(n2

� � n
2

�,eq) , (2.3)

where n�,eq denotes the equilibrium number density of the DM. The integration over Cel[f�]
vanishes since the elastic scattering does not change number of DM. The velocity averaged
annihilation cross-section of the DM into bath particles is given by [100, 102]

h�viann =
1

8m4
�TK2 (m�/T )2

Z 1

4m2
�

ds
p

s
�
s � 4m

2

�

�
�ann(s)K1

�p
s/T

�
, (2.4)

where K1,2 are the modified Bessel function of the second kind. Once the universe cools
down to Tfo, DM leaves chemical equilibrium and the co-moving number density of the DM
freezes-out.

At a temperature T after chemical decoupling of the DM, the annihilation rate becomes
negligible compared to the Hubble expansion rate. So, one can drop Cann[f�] from Eq. (2.1).
The collision term corresponding to the elastic scattering of the non-relativistic DM has the
form [103]

Cel[f�] =
E

2
�el(T )


T

@

@p

✓
E

@f�

@p

◆
+

@

@p
(pf�)

�
. (2.5)

The momentum transfer rate in the elastic scattering �el(T ) is given by [101]

�el(T ) =
1

48⇡3Tm3
�

Z
d! k

4
g
±(!)[1 ⌥ g

±(!)]
⌦
M2

↵
t
,

⌦
M2

↵
t
⌘ 1

8k4

Z
0

�4k2
dt(�t)M2

.

(2.6)

– 4 –

Here (!,k) represents the momentum of the incoming bath particle, k ⌘ |k| and M2 is the
squared amplitude of the elastic scattering process, while g

±(!) = 1/[exp(!/T ) ± 1] denote
the distribution functions of the relativistic bath particles. For s-wave elastic scatterings
hM2it = const., while for p-wave hM2it / !

2. After chemical decoupling, the evolution of
the temperature of the DM T� with respect to scale factor is obtained from Eq. (2.1) as
[79]

dT�

d ln a
+ 2T�(a)


1 +

�el(a)

H(a)

�
= 2

�el(a)

H(a)
T (a). (2.7)

To arrive at this equation, we specifically assume that the DM is non-relativistic below the
freeze-out temperature (m� > Tfo). As long as the DM is thermally coupled to the plasma,
T� is equal to the temperature of the plasma (T ). When the elastic scattering rate becomes
smaller than the Hubble expansion rate i.e., �el(T ) ⌧ H(T ), the solution of Eq. (2.7) shows
that T� redshifts as T� ⇠ a

�2. This solution additionally necessitates another condition,
i.e., �el(T )T ⌧ HT�. We will explore the implications of relaxing this condition in the
subsequent sections. In a radiation-dominated universe, the bath temperature evolves as
T ⇠ a

�1 while the DM temperature cools as T� ⇠ a
�2 after kinetic decoupling. However, the

situation becomes more involved if the thermal history of the universe during the decoupling
is di↵erent from the usual radiation domination [77–79]. In the following we investigate the
kinetic decoupling of the DM for non-standard cosmological backdrops.

Kinetic decoupling in non-standard cosmological scenario

We consider the scenarios where the temperature of the thermal bath evolves with the scale
factor as T / a

�↵ with parameter ↵ � 0, and the Hubble expansion rate varies with tem-
perature as H / T

� . The momentum transfer rate in the elastic scattering depends on the
temperature of the bath as [78, 79]

�el(T ) / T
(4+n)

, (2.8)

where n = 0, 2, ... for s-wave, p-wave, and so on. The general solution to the Eq. (2.7) has
the form [78]1

T�(a) = T
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We define Tdec (adec) as the temperature (scale factor) when �el(Tdec) = H(Tdec). As indicated
earlier, the condition for kinetic decoupling, �el(T ) ⌧ H, does not necessarily imply that the
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Here (!,k) represents the momentum of the incoming bath particle, k ⌘ |k| and M2 is the
squared amplitude of the elastic scattering process, while g

±(!) = 1/[exp(!/T ) ± 1] denote
the distribution functions of the relativistic bath particles. For s-wave elastic scatterings
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Non-standard scenario:

T ∼ a−α H ∼ Tβ
Clearly, the first term in the Eq. (2.11) dominates at a � adec, i↵ ↵ (5 + n � �) < 2. The
necessary requirement to satisfy the first decoupling condition �el(T ) ⌧ H is n = ndec >

(� � 4). When both conditions n > ndec and ↵(5 + n � �) < 2 are met simultaneously, dark
matter cools faster than the plasma, albeit not as rapidly as it would if T� ⇠ a

�2. This
stage of cooling leads to a partial kinetic decoupling of the DM from the plasma [79]. We
summarize the di↵erent possibilities below

n  ndec: no kinetic decoupling,
ndec < n < npartial: partial kinetic decoupling,

n > ndec and n � npartial: full kinetic decoupling,

where npartial ⌘ (2/↵) + � � 5. Hence, the kinetic decoupling of dark matter significantly
depends on the specific dark matter model via the nature of elastic scattering, as well as on
the underlying cosmological model through the thermal evolution of the plasma.

Partial decoupling during entropy injection

Now we focus on a scenario where a meta-stable scalar field � with an equation of state !�

dominates the energy density of the universe prior to the onset of BBN. The field � coherently
oscillates around the minima of its potential and dissipates its energy via decaying into
radiation. We assume that the decay products of � instantaneously thermalize2 to produce
a thermal bath. In general, the dissipation rate of � has non-trivial dependence on the scale
factor and the temperature of the plasma as [68, 84, 107]

�� / a
k
T
m

. (2.12)

The Boltzmann equations governing the evolution of the energy density of � (⇢�) and the
radiation (⇢�) are given by

d⇢�

dt
+ 3(1 + !�)H⇢� = �(1 + !�)��⇢� ,

d⇢�

dt
+ 4H⇢� = (1 + !�)��⇢� . (2.13)

Approximate solution of these equations yield

H / a
�3(1+!�)/2 , and T / a

2k�3(1+!�)

2(4�m) . (2.14)

This implies, in our notation, ↵ = (3(1 + !�) � 2k)/2(4 � m) and � = 3(1 + !�)(4 �
m)/ [3(1 + !�) � 2k]. Thus, the conditions on the elastic scattering channel n for the decou-
pling of DM are

ndec =
3m(1 + !�) � 8k

2k � 3(1 + !�)
, and npartial =

(7 + 3!�)(1 + m) � 10(2 + k)

2k � 3(1 + !�)
. (2.15)

In Table 1, we illustrate the nature of kinetic decoupling for some example scenarios with
di↵erent equation of states and time dependence of dissipation rates of �. As highlighted in
the Introduction, for an EMDE (!� = 0) with a constant dissipation rate (�� = const.), s-
wave (n = 0) elastic scatterings of DM does not kinetically decouple the DM from the plasma,
while p-wave (n = 2) scatterings can only partially decouple the DM. On the other hand,
if the dissipation rate (aka entropy injection) is proportional to the temperature (�� / T ),
s-wave scatterings are enough to partially decouple the DM during the EMDE while p-wave
scatterings can fully decouple the DM from the thermal plasma.

2
See [44, 53, 56, 71, 104–106] for the e↵ects of non-instantaneous thermalization on dark matter production

during reheating.
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ndec < β − 4

�

domination
k m ↵

Conditions for kinetic decoupling

ndec npartial s-wave p-wave

!� = 0
(Matter)

0 0 3/8 0 13/3 – partial
0 1 1/2 -1 2 partial full

!� = 1/3
(Radiation)

-1 0 3/4 -4/3 1/3 partial full
1 0 1/4 4 11 – –
1 2 1/2 0 3 – partial

!� = 1
(Kination)

0 0 3/4 0 5/3 – full
0 1 1 -1 0 full full

Table 1: Conditions for kinetic decoupling of the DM are shown for di↵erent non-standard
cosmological scenarios with entropy injection. In the last two columns we specifically consider
the cases where s-wave (n = 0) and p-wave (n = 2) scatterings are dominant.

2.1 Free-streaming of partially decoupled dark matter

Once chemically and kinetically decoupled from the thermal bath, the dark matter starts to
free-stream with a velocity v�(a) /

p
T�(a). The free-streaming horizon �fsh of the DM sets

the scale below which the structures will be washed out due to the large DM velocity. The
scaling of T�(a) with the scale factor(a) plays a crucial role to determine �fsh. We compute
�fsh in two cases, namely, in presence of an EMDE, and in purely radiation dominated (RD)
universe using the general solution (2.9) for T�(a) and the following expressions

�
EMD

fsh
=

Z t0
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dt
v�(t)

a(t)
=

s
3

m�

"Z aRH

adec

+

Z aeq

aRH

+

Z a0

aeq

#
da

p
T�(a)

a2H(a)
,

(
T ⇠ a

�↵
,

H ⇠ T
�

�
RD

fsh
=

Z t0

tkds

dt
v�(t)

a(t)
=

s
3

m�

"Z aeq

akds

+

Z a0

aeq

#
da

p
T�(a)

a2H(a)
,

(
T ⇠ a

�1
,

H ⇠ T
2
.

(2.16)

We define Tkds as the temperature at kinetic decoupling in the radiation dominated epoch,
such that �el(Tkds) = HRD(Tkds), while Tdec corresponds to the decoupling temperature in
the EMDE when �el(Tdec) = HEMD(Tdec).

In Fig. 1, we present the region in the Tkds �Tdec plane (normalized to TRH), where the ratio
�
EMD

fsh
/�

RD

fsh
< 1. The solid red lines denote the isocontours of the ratio r, defined as

r ⌘ �
EMD

0

�
RD

0

=

s
g⇤(TRH)

g⇤(Tkds)

✓
g⇤(Tdec)

g⇤(TRH)

◆ 3

8↵
✓

Tkds

TRH

◆
2+n ✓

TRH

Tdec

◆
(4+n)� 3

2↵

, (2.17)

where �el = �0T
4+n. The three panels in Fig. 1 illustrate di↵erent scenarios in the presence

of EMDE:

• Left panel: �� = const., resulting in T ⇠ a
�3/8, H ⇠ T

4, and partial decoupling due
to p-wave scatterings (� ⇠ T

6).

• Central panel: �� ⇠ T , leading to T ⇠ a
�1/2, H ⇠ T

3, and partial decoupling due to
s-wave scatterings (� ⇠ T

4).
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Figure 1: The ratios of dark matter free-streaming horizon in presence of an EMDE and in
standard radiation dominated epoch are shown in Tkds � Tdec plane in the units of TRH. We
fix the value of TRH at 10 MeV for illustration. The red lines represent the isocontours for
the ratio r. For r < 1, the free-streaming horizon in an EMDE is always smaller than its
counterpart in RD era. The change in the slope of the isocontours of r around Tdec/TRH ⇠ 20
is due to the jump in g⇤(T ) around the QCD phase transition.

• Right panel: �� ⇠ T , leading to T ⇠ a
�1/2, H ⇠ T

3, and full decoupling due to p-wave
scatterings (� ⇠ T

6).

We observe that in all three cases, the free-streaming horizon is smaller in the case of EMDE
if �

EMD

0
 �

RD

0
, (i.e. r  1). If the primary interaction governing the relic density of the DM

also maintains it in kinetic equilibrium with the bath, one typically needs r < 1 to match
the observed relic density in both the early matter-dominated and the radiation-dominated
cosmology. This requirement stems from the fact that the entropy injection during the EMDE
phase dilutes the relic density, necessitating a comparatively lower interaction rate. However,
in the presence multiple interactions, one may fathom a situation where the processes involved
in setting the relic density may not be the dominant interactions required for maintaining
the kinetic equilibrium, such that r > 1 is possible. In that case, �

EMD

fsh
is smaller than �

RD

fsh
,

only if Tdec/TRH is greater than a certain threshold value.

In section 4, we will consider two simple models of dark matter where the DM scatters o↵
the bath particles through s-wave and p-wave scattering, and compute the free-streaming
horizon in terms of microscopic model parameters, in the presence of an EMDE with time
dependent entropy injection.

3 Growth of matter perturbations: halo formation

Now we focus on the particular scenario where �� / T during an EMDE and analyze the
evolution of matter perturbations and formation of sub-earth halos.

3.1 Early matter domination: temperature dependent entropy injection

We consider a background cosmological model where the oscillating scalar field �, with equa-
tion of state !� = 0, dominates the universe prior to the BBN and dissipates its energy into
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�

domination
k m ↵

Conditions for kinetic decoupling

ndec npartial s-wave p-wave

!� = 0
(Matter)

0 0 3/8 0 13/3 – partial
0 1 1/2 -1 2 partial full

!� = 1/3
(Radiation)

-1 0 3/4 -4/3 1/3 partial full
1 0 1/4 4 11 – –
1 2 1/2 0 3 – partial

!� = 1
(Kination)

0 0 3/4 0 5/3 – full
0 1 1 -1 0 full full

Table 1: Conditions for kinetic decoupling of the DM are shown for di↵erent non-standard
cosmological scenarios with entropy injection. In the last two columns we specifically consider
the cases where s-wave (n = 0) and p-wave (n = 2) scatterings are dominant.

2.1 Free-streaming of partially decoupled dark matter

Once chemically and kinetically decoupled from the thermal bath, the dark matter starts to
free-stream with a velocity v�(a) /

p
T�(a). The free-streaming horizon �fsh of the DM sets

the scale below which the structures will be washed out due to the large DM velocity. The
scaling of T�(a) with the scale factor(a) plays a crucial role to determine �fsh. We compute
�fsh in two cases, namely, in presence of an EMDE, and in purely radiation dominated (RD)
universe using the general solution (2.9) for T�(a) and the following expressions

�
EMD

fsh
=

Z t0

tdec

dt
v�(t)

a(t)
=

s
3

m�

"Z aRH

adec

+

Z aeq

aRH

+

Z a0

aeq

#
da

p
T�(a)

a2H(a)
,

(
T ⇠ a

�↵
,

H ⇠ T
�

�
RD

fsh
=

Z t0

tkds

dt
v�(t)

a(t)
=

s
3

m�

"Z aeq

akds

+

Z a0

aeq

#
da

p
T�(a)

a2H(a)
,

(
T ⇠ a

�1
,

H ⇠ T
2
.

(2.16)

We define Tkds as the temperature at kinetic decoupling in the radiation dominated epoch,
such that �el(Tkds) = HRD(Tkds), while Tdec corresponds to the decoupling temperature in
the EMDE when �el(Tdec) = HEMD(Tdec).

In Fig. 1, we present the region in the Tkds �Tdec plane (normalized to TRH), where the ratio
�
EMD

fsh
/�

RD

fsh
< 1. The solid red lines denote the isocontours of the ratio r, defined as

r ⌘ �
EMD

0

�
RD

0

=

s
g⇤(TRH)

g⇤(Tkds)

✓
g⇤(Tdec)

g⇤(TRH)

◆ 3

8↵
✓

Tkds

TRH

◆
2+n ✓

TRH

Tdec

◆
(4+n)� 3

2↵

, (2.17)

where �el = �0T
4+n. The three panels in Fig. 1 illustrate di↵erent scenarios in the presence

of EMDE:

• Left panel: �� = const., resulting in T ⇠ a
�3/8, H ⇠ T

4, and partial decoupling due
to p-wave scatterings (� ⇠ T

6).

• Central panel: �� ⇠ T , leading to T ⇠ a
�1/2, H ⇠ T

3, and partial decoupling due to
s-wave scatterings (� ⇠ T

4).
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Matter power spectrum
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Figure 4: The matter power spectrum P�(k) for di↵erent values of �fsh, evaluated at z = 50,
in case of an EMDE with a temperature dependent entropy injection, where TRH = 10 MeV,
and kRH = 1.7 ⇥ 107 keq. We use the same set of benchmark points as mentioned in Fig. 3.
The green dot-dashed line represents P�(k) for purely radiation dominated universe with
�fsh = 0. The colored vertical lines correspond to the modes for which k ⇠ �

�1

fsh
, and have the

values kfsh = 3.8 ⇥ 108 keq and 5.3 ⇥ 109 keq, for Model I and Model II, respectively. The
matter power spectrum P�(k) shows di↵erent scaling behavior on two sides of kRH following
Eq. 3.19.

where As = 2.1⇥10�9, ns = 0.965 and k0 = 0.05 Mpc�1, are taken from the Planck data [2].
Following [110], the power spectrum is calculated using CAMB [115]4 for k/keq  8.2 ⇥ 105,
while we use the transfer function given in [116]5 for k/keq > 8.2 ⇥ 105. We used the Planck
data for the present-day Hubble parameter H0 = 67.4 km s�1 Mpc�1, relic density of the
baryons ⌦0

b
h
2 = 0.0224, the dark matter relic density ⌦0

DM
h
2 = 0.120, and keq = 0.01

Mpc�1 [2]. Finally, we multiply the power spectrum for the redshift 500  z  3, by a
scale-dependent growth function evaluated w.r.t z = 50, as defined in [110].

The solid red curve in Fig. 4 presents the matter power spectrum in the presence of EMDE
with energy dependent dissipation. The leading momentum dependence of P�(k) / |��|2 for
the modes entering the horizon before and after reheating is given by

P� (k, a � aeq) /

8
>><

>>:

k
4
PR / k

ns , k > kRH,

h
ln

⇣p
2 k
keq

⌘i
2

k
(ns�4)

, k < kRH.

(3.19)

We assume the free streaming length of the DM is zero for the red curve. However, in
practice, the DM begins to free stream after decoupling (both kinetically and chemically)
from the thermal bath, resulting in a non-zero free-streaming length. To account for the

4https://camb.info/
5http://background.uchicago.edu/~whu/transfer/transferpage.html
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Case Studies
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Figure 7: The allowed parameter space satisfying the present day dark matter relic density is
shown with distinct values of TRH presented by coloured bands. The DM shows partial kinetic
decoupling during the EMDE in the dark shaded region, while in the light shaded region DM
kinetically decouples after reheating. In the lime coloured region below the colour bands, DM
gets produced non-thermally from the bath. The cyan region TRH is smaller than 10 MeV.
We have also sketched the isocontours of the free-streaming horizon and identified the critical
region (above the cyan dash-dotted line) above which additional structures compared to the
standard radiation dominated cosmology would not be observed even though the dark matter
decouples during an EMDE.

4.2 Model II: p-wave scattered fermion dark matter

Now we consider a second model featuring a fermionic DM ( �) which interacts with fermionic
bath particles  � through a scalar mediator 'M . The relevant interaction is Yukawa like:
y  ̄� �'M . In this case, the elastic scattering processes  � � !  � � ,  � ̄� !  � ̄� and
their conjugates undergo via p-wave amplitudes. The rate of momentum exchange is given
by

�el(T ) =
341

756
⇡
3
y
4

m
3
�

(M � m�)2

✓
T

m�

◆
6

, m� < M  2m� , (4.3)

where M denotes the mass of the scalar mediator 'M . The total annihilation cross-section
for the processes  � ̄� !  � ̄� , and  � � !  � � , responsible for freeze-out mechanism,
are given by

�ann =
y
4

16⇡s

r
s

s � 4m2
�

"
7�m

4 + 4M
2
s

�m4 + M2s
� 4

7�m
4 + 4M

2
s � 2m

2
�s

s(s � 4m2
�)⌧(s)

coth�1
⌧(s)

#
, (4.4)
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for di↵erent redshifts, using TRH = 10 MeV and �fsh = 0.264 pc (corresponding to Mfsh =
8.5⇥10�4

M�), as an example. The first halos begin to form around z = 300, and the peak of
the di↵erential fraction Mpeak increases until around z = 50, when �(Mpeak, z) ⇠ �c. Beyond
this point, the earlier forming halos start to merge, leading to a decrease in the di↵erential
fraction. Ultimately, Mpeak saturates at around Mpeak ' 0.1 M� for z < 10, while the
abundance of structures with M � MRH remains the same as in the radiation-dominated
universe.

4 Case studies: scalar and fermion dark matter

To complement our model-independent discussion so far, in this section we present some un-
derlying particle physics models to describe the interaction between the thermal plasma and
the non-relativistic dark matter. In particular, we consider two simple examples exhibiting
s-wave and p-wave elastic scatterings, for illustrative purposes. Many other microscopic mod-
els can lead to s- and p-wave elastic scattering rate, as listed in [101], similar analyses can be
repeated for them. We identify regions in the microscopic parameter space of these models
where the kinetic decoupling occurs during the EMDE (with �� ⇠ T ) and the sub-earth halo
formation amplifies.

4.1 Model I: s-wave scattered scalar dark matter

The first model we consider has a scalar dark matter (��), interacting with scalar bath
particles (��) via a quartic vertex (�/4)�2

��
2
� . This leads to an s-wave scattering ���� !

���� , with momentum transfer rate

�el(T ) =
�
2
⇡

180
m�

✓
T

m�

◆
4

, (4.1)

where m� 2 (20 � 1000) GeV is the typical mass for WIMP DM.

The thermally averaged cross-section for the annihilation process ���� ! ���� , which sets
the relic abundance is computed using Eq. (2.4) as

h�vi
ann

' �
2

32⇡m2
�

✓
1 � 3

T

m�

◆
. (4.2)

In Fig. 7, we categorized the allowed regions in the � � m� parameter space satisfying the
following constraints:

• EMDE concludes at TRH � 10 MeV [118, 119] to evade strong bounds from the BBN,
isocontours of TRH are shown in colour.

• The DM was in thermal contact at the onset of the EMDE, and freezes-out prior to
the reheating, the observed present day relic density of the DM ⌦0

DM
h
2 = 0.12 [2] is

reproduced.

• In the dark coloured region, partial kinetic decoupling of the DM occurs, however, the
sub-earth halo population amplifies on the right of the blue dashed contour.

• The isocontours of the free-streaming horizon �fsh (white curves), intersect the blue
contour at the threshold value �

c
fsh

for fixed TRH.
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Figure 8: The allowed parameter region satisfying m� < M  2m� and reproducing the
present day relic density of dark matter for a fixed value of TRH = 100 MeV. In the dark
shaded region, dark matter kinetically decouples during the EMDE, while it decouples during
radiation dominated epoch in the light-shaded region. Enhancement in sub-earth halo popula-
tion can not be observed in the region on the left side of the cyan dashed curve, even though
DM remains fully kinetically decoupled during EMDE. The isocontours of the free-streaming
horizon are shown by white lines.

where we define

�m
2 ⌘ M

2 � m
2

� , and ⌧(s) ⌘
s � 2m

2
� + 2M

2

q
s(s � 4m2

�)
. (4.5)

The thermal averaged cross-section h�viann is computed using the Eq. (2.4).

Fig. 8 presents the allowed parameter space, satisfying the present day relic density of dark
matter, for a fixed value of reheating temperature TRH = 100 MeV. Salient features of this
model illustrated in Fig. 8 are described below:

• We have identified the region where additional amount of structure can not be observed
even after DM becomes fully kinetically decoupled during an EMDE. This is becuase the
free-streaming horizon of DM in that region exceeds the threshold value (represented
by the cyan dash-dotted contour) for the corresponding TRH.

• The area where the DM kinetically decouples during the radiation dominated epoch
has also been highlighted. We also project the isocontours of free-streaming horizon on
the allowed parameter space.

• We have used the mass hierarchy m� < M < 2m�, we discarded the regions M < m�

(lime shaded region) and M > 2m� (yellow colored region).
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Figure 7: The allowed parameter space satisfying the present day dark matter relic density is
shown with distinct values of TRH presented by coloured bands. The DM shows partial kinetic
decoupling during the EMDE in the dark shaded region, while in the light shaded region DM
kinetically decouples after reheating. In the lime coloured region below the colour bands, DM
gets produced non-thermally from the bath. The cyan region TRH is smaller than 10 MeV.
We have also sketched the isocontours of the free-streaming horizon and identified the critical
region (above the cyan dash-dotted line) above which additional structures compared to the
standard radiation dominated cosmology would not be observed even though the dark matter
decouples during an EMDE.

4.2 Model II: p-wave scattered fermion dark matter

Now we consider a second model featuring a fermionic DM ( �) which interacts with fermionic
bath particles  � through a scalar mediator 'M . The relevant interaction is Yukawa like:
y  ̄� �'M . In this case, the elastic scattering processes  � � !  � � ,  � ̄� !  � ̄� and
their conjugates undergo via p-wave amplitudes. The rate of momentum exchange is given
by

�el(T ) =
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, m� < M  2m� , (4.3)

where M denotes the mass of the scalar mediator 'M . The total annihilation cross-section
for the processes  � ̄� !  � ̄� , and  � � !  � � , responsible for freeze-out mechanism,
are given by
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Figure 7: The allowed parameter space satisfying the present day dark matter relic density is
shown with distinct values of TRH presented by coloured bands. The DM shows partial kinetic
decoupling during the EMDE in the dark shaded region, while in the light shaded region DM
kinetically decouples after reheating. In the lime coloured region below the colour bands, DM
gets produced non-thermally from the bath. The cyan region TRH is smaller than 10 MeV.
We have also sketched the isocontours of the free-streaming horizon and identified the critical
region (above the cyan dash-dotted line) above which additional structures compared to the
standard radiation dominated cosmology would not be observed even though the dark matter
decouples during an EMDE.

4.2 Model II: p-wave scattered fermion dark matter

Now we consider a second model featuring a fermionic DM ( �) which interacts with fermionic
bath particles  � through a scalar mediator 'M . The relevant interaction is Yukawa like:
y  ̄� �'M . In this case, the elastic scattering processes  � � !  � � ,  � ̄� !  � ̄� and
their conjugates undergo via p-wave amplitudes. The rate of momentum exchange is given
by
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where M denotes the mass of the scalar mediator 'M . The total annihilation cross-section
for the processes  � ̄� !  � ̄� , and  � � !  � � , responsible for freeze-out mechanism,
are given by
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Figure 9: Di↵erential halo mass fraction is demonstrated for both the models at di↵erent
redshifts values. For the benchmark points as mentioned in the caption of Fig. 3, the free-
streaming horizon of DM turns out to be 0.264 pc and 0.019 pc for Model I and Model II,
respectively. The di↵erential halo mass function peaks around M = 0.1 M�.

We illustrate the di↵erential halo mass function at several redshifts values for both the model
in Fig. 9. For the benchmark points as mentioned in the caption of Fig. 3, the free-streaming
horizon of DM turns out to be 0.264 pc and 0.019 pc for Model I and Model II, respectively.
The di↵erential halo mass function peaks around M = 0.1 M�.

Insert it in paper- The DM temperature at reheating, T�(aRH) is 55.5 KeV and 12 eV for
Model I and Model II respectively. This emphasizes extra cooling because of full decoupling
of fermionic DM compared to partial decoupling of scalar DM. It also explains order one
di↵erence of �fsh between two models for same decoupling temperature of 2.2 GeV.

5 Conclusions

We have comprehensively studied the chemical and kinetic decoupling of thermal dark matter
in the presence of a pre-BBN early matter-dominated era. Specifically, we explore a scenario
where a long-lived scalar field dominated the energy density of the universe, eventually trans-
ferring energy to the radiation through a temperature-dependent dissipation rate (�� ⇠ T ).
We demonstrate that the kinetic decoupling of the DM during the EMDE is partial if the
elastic scattering of the DM with the bath particles is dominated by s-wave partial wave am-
plitudes, while the DM fully decouples during the EMDE if it undergoes p-wave scattering.
This is in contrast to an EMDE with constant rate of energy dissipation, where s-wave scat-
terings are ine�cient to kinetically decouple the DM, while p-wave scatterings can partially
decouple it from the thermal bath.

An early kinetic decoupling reduces the free-streaming horizon of DM (�fsh) due to additional
cooling of the DM during the EMDE. In addition, the presence of an EMDE also enhances the
matter perturbations for scales entering the horizon during this epoch. The population of the
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Figure 1: Evolution of the thermal plasma temperature as a function of z, obtained by
numerically solving Eq. (2) and Eq. (3) for different values of (n, k,!) as given in the
legend. The colored vertical lines show the approximate values of zNA for different
cases with specific (n, k,!). For the purpose of illustration, we assume Tinf = 104

GeV, Teq = 103 GeV and, TRH = 1 GeV. Note that the value of zRH depends on !. For
(2,6/5,1/5) case, the value of zRH is shown by the vertical dashed line.

Table 2: Approximate expressions for the evolution of T (z) and H(z) in different
cosmological epochs.
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For the ! = 0 case, our generic results conform with those obtained in [70]. Approximate
analytic expressions for the variation of T (z) and H(z) in the various epochs are shown in
Tab. 2. The value of z at the beginning of the EMDNA can be calculated as

zNA =

2
41+

2�⇢�(Teq)
1
2

p
3Mp �̂ (4� n)(1+!)

3
5
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. (5)

The temperature evolution during EMDNA era is sensitive to the exact temperature and scale
factor dependence in Eq. (1). For n � 4 or � < 0 the adiabatic evolution ends by an instan-
taneous reheating at TRH which we do not consider here. In Fig. 1, different cases of (n, k,!)
lead to qualitatively different evolution of the temperature during the EMDNA epoch. During
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the EMDNA era, the temperature remains constant for 2k = 3(1+!) (the (2,3/2,0) case in
Fig. 1), while T (z) grows with z for 2k > 3(1+!) (the (3, 3, 0) case in Fig. 1). End of the EMD
era is characterized by the condition ⇢�(TRH) = ⇢�(TRH), and the corresponding z is given as
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The scale factor at today, expressed in terms of z is given by z0 = (Teq/T0)(TRH/Teq)
(3!�1)
3(1+!) . Note

that for ! 2 (�1,1/3), z0 is always greater than (Teq/T0) which would have been the value of
z0 in the absence of matter domination.

3 Dark matter freeze-in during matter domination

In this section we discuss the impact of an EMD epoch with generalized dissipation of � on the
freeze-in production of dark matter. Simply speaking, the entropy production during the non-
adiabatic phase of the EMD era induces a dilution in the relic abundance of the dark matter.
However, T and z dependent dissipation rate of the meta-stable matter changes the amount
of dilution of the DM relic. Thus, a larger production rate for the DM may be required to
reproduce the observed abundance at the present time.

To illustrate our point, we consider a simple setup where the DM (�) is produced in pair
by the annihilation of two SM particles via the process SM + SM! X ⇤ ! � + � . Here X acts
as a portal between the dark sector and the visible sector which can, for instance, be a dark
photon, a Z 0, or a RH neutrino with extremely small couplings with the SM. The small coupling
with the SM is necessary to ensure that X is never in the thermal bath. Coupling between the
X and the DM can, however, be as large as O(1).

The Boltzmann equation for the evolution of dark matter number density (n�) is given by

ṅ� + 3Hn� = R(T ) , (7)

where R(T ) denotes the freeze-in production rate of the dark matter. The rate for the 2! 2
scattering SM+ SM! X ⇤ ! � +� can be written in its full glory as [77]

R(T ) =
T

2048⇡6

Z
ds
p

sK1

Åp
s

T

ã
vut

1�
4m2

�

s

vut
1�

4m2
B

s

Z
d⌦ |M|2 , (8)

where mB generically represents the mass of a SM particle in the thermal bath and |M|2 is the
amplitude square summed over initial and final states. In Eq. (8), we assume that both the
SM particles and the dark matter follow Maxwell-Boltzmann distribution and the interactions
between them are CP invariant. The production rate given above can be parametrized in a
simple form depending on the hierarchy between the DM mass (m�), the mediator mass (MX )
and the masses of the bath particles (mB) as
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Table 1: Representative cases illustrating the dependence of �� on the temperature
and scale factor. The last column depicts its consequence on the temperature evolu-
tion during entropy production era.

Dynamics of � / V (�) �� (n, k,!) T (z) during EMDNA
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dynamics of the oscillating matter field and its interactions with the thermal plasma. Different
possibilities for n and k in specific scenarios are discussed in [54, 70, 89, 90]. In Tab. 1, we
list some representative cases where the dissipation rate depends on the temperature of the
thermal bath and h�(t)i. The evolution of energy densities of the late-decaying matter ⇢�
and radiation ⇢� are given by the following equations

⇢̇� + 3(1+!)H⇢� = �(1+!)��⇢� , (2)

⇢̇� + 4H⇢� = (1+!)��⇢� , (3)

where the Hubble expansion rate is H =
p
⇢� +⇢�/

p
3Mp with Mp being the reduced Planck

mass. In order to solve Eq. (3), we make the crucial assumption that the radiation produced
from � thermalizes instantaneously. This allows us to relate ⇢� with an instantaneous bath
temperature as ⇢� = (⇡2/30)g⇤(T ) T4. For simplicity we assume that the effective energetic
and entropic degrees of freedom are constant, g⇤(T ) = g⇤S(T ) = 106.75. It is convenient to
express the solutions for the energy densities in terms of a dimensionless variable z ⌘ a/aeq
(with dz = zHd t).

In Fig. 1 we present the variation of the temperature of radiation bath as a function of z for
different values of (n, k, w), keeping Teq and TRH fixed. For 0 n< 4 and� ⌘ 5�2n+2k�3! > 0,
the EMD epoch can be further divided into two regions: an epoch of adiabatic evolution of
the temperature (EMDA), followed by an entropy production phase where the thermal plasma
becomes non-adiabatic (EMDNA). The approximate solutions for the Eq. (2) and Eq. (3) in the
EMD epoch are given by
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Figure 1: Evolution of the thermal plasma temperature as a function of z, obtained by
numerically solving Eq. (2) and Eq. (3) for different values of (n, k,!) as given in the
legend. The colored vertical lines show the approximate values of zNA for different
cases with specific (n, k,!). For the purpose of illustration, we assume Tinf = 104

GeV, Teq = 103 GeV and, TRH = 1 GeV. Note that the value of zRH depends on !. For
(2,6/5,1/5) case, the value of zRH is shown by the vertical dashed line.

Table 2: Approximate expressions for the evolution of T (z) and H(z) in different
cosmological epochs.
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For the ! = 0 case, our generic results conform with those obtained in [70]. Approximate
analytic expressions for the variation of T (z) and H(z) in the various epochs are shown in
Tab. 2. The value of z at the beginning of the EMDNA can be calculated as

zNA =
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The temperature evolution during EMDNA era is sensitive to the exact temperature and scale
factor dependence in Eq. (1). For n � 4 or � < 0 the adiabatic evolution ends by an instan-
taneous reheating at TRH which we do not consider here. In Fig. 1, different cases of (n, k,!)
lead to qualitatively different evolution of the temperature during the EMDNA epoch. During
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the EMDNA era, the temperature remains constant for 2k = 3(1+!) (the (2,3/2,0) case in
Fig. 1), while T (z) grows with z for 2k > 3(1+!) (the (3,3, 0) case in Fig. 1). End of the EMD
era is characterized by the condition ⇢�(TRH) = ⇢�(TRH), and the corresponding z is given as
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The scale factor at today, expressed in terms of z is given by z0 = (Teq/T0)(TRH/Teq)
(3!�1)
3(1+!) . Note

that for ! 2 (�1, 1/3), z0 is always greater than (Teq/T0) which would have been the value of
z0 in the absence of matter domination.

3 Dark matter freeze-in during matter domination

In this section we discuss the impact of an EMD epoch with generalized dissipation of � on the
freeze-in production of dark matter. Simply speaking, the entropy production during the non-
adiabatic phase of the EMD era induces a dilution in the relic abundance of the dark matter.
However, T and z dependent dissipation rate of the meta-stable matter changes the amount
of dilution of the DM relic. Thus, a larger production rate for the DM may be required to
reproduce the observed abundance at the present time.

To illustrate our point, we consider a simple setup where the DM (�) is produced in pair
by the annihilation of two SM particles via the process SM + SM! X ⇤ ! � + � . Here X acts
as a portal between the dark sector and the visible sector which can, for instance, be a dark
photon, a Z 0, or a RH neutrino with extremely small couplings with the SM. The small coupling
with the SM is necessary to ensure that X is never in the thermal bath. Coupling between the
X and the DM can, however, be as large as O(1).

The Boltzmann equation for the evolution of dark matter number density (n�) is given by

ṅ� + 3Hn� = R(T ) , (7)

where R(T ) denotes the freeze-in production rate of the dark matter. The rate for the 2! 2
scattering SM+ SM! X ⇤ ! � +� can be written in its full glory as [77]
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where mB generically represents the mass of a SM particle in the thermal bath and |M|2 is the
amplitude square summed over initial and final states. In Eq. (8), we assume that both the
SM particles and the dark matter follow Maxwell-Boltzmann distribution and the interactions
between them are CP invariant. The production rate given above can be parametrized in a
simple form depending on the hierarchy between the DM mass (m�), the mediator mass (MX )
and the masses of the bath particles (mB) as
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3 Dark matter freeze-in during matter domination

In this section we discuss the impact of an EMD epoch with generalized dissipation of � on the
freeze-in production of dark matter. Simply speaking, the entropy production during the non-
adiabatic phase of the EMD era induces a dilution in the relic abundance of the dark matter.
However, T and z dependent dissipation rate of the meta-stable matter changes the amount
of dilution of the DM relic. Thus, a larger production rate for the DM may be required to
reproduce the observed abundance at the present time.
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with the SM is necessary to ensure that X is never in the thermal bath. Coupling between the
X and the DM can, however, be as large as O(1).

The Boltzmann equation for the evolution of dark matter number density (n�) is given by

ṅ� + 3Hn� = R(T ) , (7)

where R(T ) denotes the freeze-in production rate of the dark matter. The rate for the 2! 2
scattering SM+ SM! X ⇤ ! � +� can be written in its full glory as [77]

R(T ) =
T
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p
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s

Z
d⌦ |M|2 , (8)

where mB generically represents the mass of a SM particle in the thermal bath and |M|2 is the
amplitude square summed over initial and final states. In Eq. (8), we assume that both the
SM particles and the dark matter follow Maxwell-Boltzmann distribution and the interactions
between them are CP invariant. The production rate given above can be parametrized in a
simple form depending on the hierarchy between the DM mass (m�), the mediator mass (MX )
and the masses of the bath particles (mB) as
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(9)
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