

<u>Towards a possible solution to the</u> Hubble tension with Horndeski gravity

Yashi Tiwari

Senior Research Fellow, Joint Astronomy Programme

Department of Physics, Indian Institute of Science, Bangalore

August 10, 2024

Frontiers in Particle Physics 2024

Centre for High Energy Physics, Indian Institute of Science, Bangalore

Outline

- The Standard Model of Cosmology
- Hubble Tension
- Resolution: Dynamical Dark Energy
- Hints of dynamical dark energy : DESI
- Dark Energy in Horndeski gravity
- Constraints from Observations
- Conclusion and Future Prospects

Present understanding of the universe

Image Credit: NASA/ LAMBDA Archive / WMAP Science Team

Present understanding of the universe: Λ CDM model

Lambda Cold Dark Matter (ACDM) Model : Simplest Scenario

$$H(z) = H_0 \sqrt{\Omega_{r0}(1+z)^4 + \Omega_{m0}(1+z)^3 + \Omega_\Lambda}$$

Here it is assumed that universe is spatially flat i.e. $\Omega_k=0$. Thanks to inflation!

High Precision Measures of H_0

CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53 -Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60 -Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54 -

CMB without Planck -

Dutcher et al. (2021), SPT: 68.8 ± 1.5 – Aiola et al. (2020), ACT: 67.9 ± 1.5 – Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 – Zhang, Huang (2019), WMAP9+BAO: 68.36 ± 0.53

No CMB, with BBN

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5 Philcox et al. (2020), P_{ℓ} +BAO+BBN: 68.6 ± 1.1 Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1 Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97

Cepheids – SNIa

Riess et al. (2020), R20: 73.2 ± 1.3 Breuval et al. (2020): 72.8 ± 2.7 Riess et al. (2019), R19: 74.0 ± 1.4 Camarena, Marra (2019): 75.4 ± 1.7 Burns et al. (2018): 73.2 ± 2.3 Follin, Knox (2017): 73.3 ± 1.7 Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8 Riess et al. (2016), R16: 73.2 ± 1.7 Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1 Freedman et al. (2012): 74.3 ± 2.1

TRGB - SNIa

Soltis, Casertano, Riess (2020): 72.1 ± 2.0 -Freedman et al. (2020): 69.6 ± 1.9 -Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.9 -Freedman et al. (2019): 69.8 ± 1.9 -Yuan et al. (2019): 72.4 ± 2.0 -Jang, Lee (2017): 71.2 ± 2.5 -

Masers

Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR) Kourkchi et al. (2020): 76.0 ± 2.6

Schombert, McGaugh, Lelli (2020): 75.0 ± 2.6

Surface Brightness Fluctuations

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Lensing related, mass model – dependent

Yang, Birrer, Hu (2020): $H_0 = 73.65^{+1.95}_{-226}$ Millon et al. (2020), TDCOSMO: 74.2 ± 1.6 Qi et al. (2020): 73.6^{+1.8}_{-1.6} Liao et al. (2020): 72.2 ± 2.1 Shajib et al. (2019), STRIDES: 74.2^{+2.7}_{-2.7} Wong et al. (2019), HOLICOW 2019: 73.3^{+2.7}_{-2.6} Birrer et al. (2018), HOLICOW 2018: 72.5^{+2.3}_{-2.7}_{-3.0} Bonvin et al. (2016), HOLICOW 2016: 71.9^{+2.3}_{-3.0}

Optimistic average

Di Valentino (2021): 72.94 ± 0.75 Ultra – conservative, no Cepheids, no lensing Di Valentino (2021): 72.7 ± 1.1

The Hubble Trouble

(Di Valentino et al 2021)

Understanding Hubble Tension

Early measurements

- Based on observations of cosmic microwave background coming from last scattering surface (redshift ~ 1100, 13.76 Gyr back).
- > Assumes Λ CDM model to calculate H_0 .
- Planck, WMAP
- $H_0 = 67.37 \pm 0.54 \text{ km/sec/Mpc}$

Late measurements

- Based on astrophysics of stars: observing standard candles in the nearby universe.
- Model independent measurement.
- ➢ SHOES, CHP
- $> H_0 = 73.3 \pm 1.04 \text{ km/sec/Mpc}$

Measurement of H_0 from early Universe

six independent parameters of **LCDM** model.

Derived parameters

Parameter	Combined
$\overline{\Omega_{\rm b}h^2}$	0.02233 ± 0.00015
$\Omega_{\rm c}h^2$	0.1198 ± 0.0012
$100\theta_{MC}$	1.04089 ± 0.00031
τ	0.0540 ± 0.0074
$\ln(10^{10}A_{\rm s})$	3.043 ± 0.014
<i>n</i> _s	0.9652 ± 0.0042
$\Omega_{-}h^{2}$	0.1428 ± 0.0011
H_0^{-1} [km s ⁻¹ Mpc ⁻¹]	67.37 ± 0.54
36m	0.3147 ± 0.0074 12 801 + 0.024
Age [Gyr]	15.801 ± 0.024
σ_8	0.8101 ± 0.0061
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} . .$	0.830 ± 0.013
Zre	7.64 ± 0.74
1000.	1.04108 ± 0.00031
<i>r</i> _{drag} [Mpc]	147.18 ± 0.29

Planck 2018 measurements assuming LCDM model give, $H_0 = 67.37 \pm 0.54$ km/sec/Mpc

Reference: Planck Collaboration (2018)

Measurement of H_0 from Late Universe

Image Credit: NASA

Cosmic Distance Ladder : calibrating distances to galaxies farther away upto redshift ~ 0.1

- Observing standard candles (Supernovae and Cepheids) to calibrate distances to galaxies and using Hubble's law to calculate H₀.
- The **SHOES** Program (Supernovae and H_0 for the Equation of State of dark energy) measured $H_0 = 73.3 \pm 1.04$ km/sec/Mpc (*Riess et al 2022*).
- \succ This drives the H_0 tension $\sim 5\sigma$

Resolving Hubble Tension with a dynamical dark energy

A dark energy field whose equation of state evolves with time w(z): But what else?

Physics of the Dark Universe Volume 39, February 2023, 101163

Conditions which can resolve cosmological tensions without disturbing the CMB observations:

- Phantom crossing
- Variation in Gravitational coupling constant G_{eff}

Simultaneously solving the H_0 and σ_8 tensions with late dark energy

Lavinia Heisenberg ^{a b} 🝳 🖂 , Hector Villarrubia-Rojo ^b 🖂 , Jann Zosso ^b 🖂

Phantom equation of state: w < -1 \longrightarrow Violation of Strong Energy Condition

Hints of dynamical dark energy from DESI

FERMILAB-PUB-24-0154-PPD

PREPARED FOR SUBMISSION TO JCAP

DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

DESI Collaboration: A. G. Adame,¹ J. Aguilar,² S. Ahlen⁰,³

- DESI BAO favors a dynamical dark energy over cosmological constant.
- Signatures of phantom crossing in DESI.

U.S. Department of Energy Office of Science

Our Approach

Towards a possible solution to the Hubble tension with Horndeski gravity

Yashi Tiwari, Basundhara Ghosh, Rajeev Kumar Jain

Eur. Phys. J. C (2024) 84:220 https://doi.org/10.1140/epjc/s10052-024-12577-0 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Towards a possible solution to the Hubble tension with Horndeski gravity

¹ Joint Astronomy Programme, Department of Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India

² Department of Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India

Our Model: A subclass of Horndeski theory

$$\mathcal{L}_{\phi} = \frac{R}{2} \left[1 + 2c_{3}\phi \right] + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - \left[c_{1}\phi + \frac{1}{2}c_{2}\partial_{\mu}\phi\partial^{\mu}\phi \right] \partial_{\mu}\partial^{\mu}\phi,$$

Non-minimal coupling

Self-interaction (Galileon)

 $\mathcal{L} = \sum_{i=2}^{5} \mathcal{L}_{i},$ Horndeski gravity: A generalized scalar tensor theory in 4D with second order equations o motion $\mathcal{L}_{2} = G_{2}(\phi, X),$ $\mathcal{L}_{3} = -G_{3}(\phi, X)\Box\phi,$ $\mathcal{L}_{4} = G_{4}(\phi, X)R + G_{4,X}(\phi, X) \left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2} \right],$ $\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi - \frac{1}{6}G_{5,X}(\phi, X) \left[(\Box\phi)^{3} - 3\Box\phi(\nabla_{\mu}\nabla_{\nu}\phi)^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3} \right],$ (Kobayashi et al 2011, Kobayashi 2019)

Background: Previous results

Eur. Phys. J. C (2024) 84:220 https://doi.org/10.1140/epjc/s10052-024-12577-0 The European Physical Journal C

Regular Article - Theoretical Physics

Towards a possible solution to the Hubble tension with Horndeski gravity

Yashi Tiwari^{1,a}, Basundhara Ghosh^{2,b}, Rajeev Kumar Jain^{2,c}

¹ Joint Astronomy Programme, Department of Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India ² Department of Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India

- c₁=3.0, c₂=5.0, c₃=0.01 75 - c₁=3.0, c₂=5.0, c₃=0.015 - c₁=4.0, c₂=6.0, c₃=0.01 Riess 2022 - c₁=4.0, c₂=6.0, c₃=0.015 70 — ACDM H (Z) (1 + Z) BAO Ly-α 65 Quasar DR14 BOSS DR12 60 55 0.0 0.5 1.0 1.5 2.0 2.5 z

Eur.Phys.J.C 84 (2024) 3, 220

Background: Previous results

Eur.Phys.J.C 84 (2024) 3, 220

Work in progress

Towards a Simultaneous Alleviation of H0 and S8 tension with Horndeski gravity

Yashi Tiwari, Ujjwal Upadhyay, Rajeev Kumar Jain

S_8 Tension

$$S_8 = \sigma_8 \left(\frac{\Omega_M}{0.3}\right)^{0.5}$$

A measure of amplitude of matter clustering in late universe

 σ_8 is the variance of density field smoothed over $8h^{-1}$ Mpc

Most of the proposed solutions which resolve Hubble Tension, actually worsen S_8 tension !!!

⁽Abdalla et al 2022)

Perturbations: Growth of structures

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1-2\Phi)d\mathbf{x}^{2} -$$

Perturbed metric in Newtonian gauge

In quasistatic limit within sub horizon scales the evolution of matter density perturbation follows,

Some preliminary results: *G*_{eff}

Some preliminary results: Growth Rate

Cosmological Parameter Estimation

Parameters	68% limits
H_0	69.06 ± 0.47
Ω_m	0.2953 ± 0.0052
S_8	0.8165 ± 0.0124
c_1	3.4275 ± 1.5290
c_2	2.1895 ± 3.9560
c_3	0.0003 ± 0.0006

Conclusion and Future Prospects

- We exploit the phenomenology of Horndeski theory to build dark energy model to resolve cosmological tensions.
- Interesting features like phantom crossing, variation in gravitational coupling constant etc., can be obtained in such a setup.
- > Constrains are obtained on parameter space by Supernovae, Planck, BAO and SHOES data.
- > We are working on including new DESI data in the analysis.
- We further plan to constrain such MG theories (particularly with nonminimal couplings) with GWs and their cross correlations with galaxy surveys, in a model independent way.

