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New Physics?
 Copious amounts of data are generated at the LHC, making the discovery potential for 

new physics enormous .

 Despite thousands of searches for new physics at the LHC, all we have are limits and null 
results.

 What if new physics is hiding in the data but we haven’t looked in the right places yet?

J. Kim, K. Kong, B. Nachman, D. Whiteson,  1907.06659

Models Signatures



Model-Agnostic Searches

Nachman and Shih, 2001.04990

 Can we search for new physics more model-independently and fill all the gaps in our 
coverage?
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Autoencoders (AEs) as Anomaly Detectors
 Autoencoders work by learning compression to a latent space which preserves the original 

information.

 Variational AE has encoder, decoder architecture like 
AE. Encoder of VAE attempts to generate parameters of 
the parametric probability distribution in latent space. 
Typically, distribution is chosen to be gaussian.

 The reconstruction fidelity gives an anomaly score. 

https://towardsdatascience.com/



Unsupervised Anomaly Detection

M. Farinia, Y. Nakai, D. Shih, 
PRD 101, 075021 (2020)

ATLAS-CONF-2023-022

 Not relying on specific signal hypothesis —
model independent search. 

 Unsupervised anomaly detection trained on 
data — no MC modelling dependence 



CWoLA Bump Hunt – Weak Supervision
 Trained on two data samples with different signal fractions.
 Classifier is also optimal for distinguishing signal vs 

background because optimal classifier is the likelihood ratio.

[Metodiev et al: 1708.02949]



CWoLA Bump Hunt – Weak Supervision
 Trained on two data samples with different signal fractions.
 Classifier is also optimal for distinguishing signal vs 

background because optimal classifier is the likelihood ratio.

 Can also be used for a weakly supervised bump hunt: 
• Train a classifier between signal region and side bands 
• Apply a threshold cut on the classifier output and perform a 

bump hunt

CWoLa hunting in the dijet final state

[Metodiev et al: 1708.02949]

[Collins et al: 1902.02634]



LHC Run3
 At the end of LHC Run3, the computational needs will 

exceed the available budget. 
 A large fraction goes into simulation.

CERN-LHCC-2020-015; LHCC-G-178 

ATLAS Software and Computing HL-LHC Roadmap (cern.ch)



LHC Run3
 At the end of LHC Run3, the computational needs will 

exceed the available budget. 
 A large fraction goes into simulation.

CERN-LHCC-2020-015; LHCC-G-178 

ATLAS Software and Computing HL-LHC Roadmap (cern.ch)

Calls for Detector Simulation which 
will be fast and faithful 



Deep Generative Models
Sampling from Noise

Learns the distribution of data and generates 
new data from the distribution.



Deep Generative Models
Sampling from Noise Generative Adversarial Networks (GANs) are a way to make 

a generative model by having two neural networks 
compete with each other

 Generator: generates fake samples, tries to fool the Discriminator
 Discriminator: tries to distinguish between real and fake samples
 Train them against each other
 Repeat this and we get better Generator and Discriminator

Learns the distribution of data and generates 
new data from the distribution.

- Goodfellow et. al., “Generative Adversarial Networks” (2014)



GANs

https://research.nvidia.com/publication/2018-04_progressive-
growing-gans-improved-quality-stability-and-variation



GANs

https://research.nvidia.com/publication/2018-04_progressive-
growing-gans-improved-quality-stability-and-variation

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355; 1712.10321] 



GANs

https://research.nvidia.com/publication/2018-04_progressive-
growing-gans-improved-quality-stability-and-variation

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355; 1712.10321] 

 GANs have been demonstrated to be capable of 
reproducing Geant4 calorimeter images with 
reasonable accuracy (both at the individual image 
level and at the distributional level), while 
gaining up to 5 orders of magnitude in 
computational speed.



Plot from Claudius Krause’s slide

CALOFLOW: Fast and Accurate Generation of 
Calorimeter Showers with Normalizing Flows



Normalizing Flows
 A transformation of a simple probability distribution into a more complex distribution by a 

sequence of invertible and differentiable mappings.



Normalizing Flows
 A transformation of a simple probability distribution into a more complex distribution by a 

sequence of invertible and differentiable mappings.

Probability Transformation in NFs Learn to transform to 

Invertible, differentiable function

Volume correction

https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/Introduction%20-%20CVPR2021.pdf



Building Flows by Composition
 Invertible, differentiable functions are closed under composition.
 A complex flow is built from composition of simpler flows.

Determinant of Jacobian Likelihood



CALOFLOW

Flow I

 learns 

Flow II 
 learns of normalized showers 

CaloGAN: [1705.02355; 1712.10321] 

Claudius Krause and David Shih, 2106.05285



CALOFLOW

Flow I

 learns 

Flow II 
 learns of normalized showers

 in CALOFLOW v1:
• Slow in sampling (≈ 500× slower than CALOGAN)
• Impressive quality!

CaloGAN: [1705.02355; 1712.10321] 

Claudius Krause and David Shih, 2106.05285



Average shower shapes for . Columns are calorimeter layers 0 to 2 
Claudius Krause and David Shih, 2106.05285



Average shower shapes for . Columns are calorimeter layers 0 to 2 
Claudius Krause and David Shih, 2106.05285



Unfolding at the LHC

Theory

Hard 
Process Shower Hadronization Detectors Events

Unfolding Detector effects

 Classifier based approach 
OmniFold [1911.09107], Profiled Unfolding [2302.05390]

 Density based approach 
FCGAN [1912.00477], cINN [2006.06685], IcINN [2212.08674], OTUS [2101.08944]



Unfolding Setup
 Measurements are affected by detector effects of finite resolution and limited acceptance. 

1. Learn detector response from trustable simulation

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

2. Truth-level 
measurements can be 
compared across 
experiments and to 
theoretical calculations 

3. Goal of unfolding is to 
learn a generative 
particle-level model that 
reproduces the data

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107



Unfolding Setup

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107

Dataset A with points 
sampled from 

Dataset B with points 
sampled from 

Weights 
so that 

when dataset A is 
weighted by it is 
statistically identical 
to dataset B.
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Unfolding Setup
 What if we don’t (and can’t easily) know and ?

ATLAS, CMS

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Andreassen, Nachman,  PRD RC 101 (2020) 091901 

Dataset A with points 
sampled from 

Dataset B with points 
sampled from 

Weights 
so that 

when dataset A is 
weighted by it is 
statistically identical 
to dataset B.

Use classification to train a 
neural network to distinguish 
the two datasets, NN learn to 
approximate the likelihood ratio 



OmniFold Equations

– particle-level weights for Gen, nth iteration 
– detector-level weights for Sim, nth iteration

Inputs
– pairs of Gen and Sim events

– initial particle-level weights for Gen – Data

– pulling back to particle-level
– pushing to detector-level
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Unfold any observable using universal weights 

୳୬୤୭୪ୢୣୢ
୬
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OmniFold Andreassen, Komiske, Metodiev, Nachman, Thaler, 
1911.09107



OmniFolding Jet Substructure Observables

 Five unfolding iterations in all cases 
 Statistical uncertainties on prior shown in ratio 

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107



Summary/Outlook

 There is a substantial ongoing work in model agnostic searches, and its exciting to see it 
starting to be used in experimental results.

[ATLAS: 2005.02983, ATLAS-CONF-2022-045, ATLAS-CONF-2023-022, CMS-DP-2022-021, CMS-DP-2022-043….]

 Techniques, like generative models, are paving the way for more efficient and realistic 
simulations, reducing computational costs and expanding the scope of theoretical 
investigations.

 Density estimation-based models like normalizing flows/diffusion models (that can efficiently 
map a simple distribution to a target one) are being used for detector simulation.



Training Discriminator



OmniFold - Schematic
 OmniFold weights particle-level Gen to be consistent with Data once passed through the 

detector



Training Generator



Real time Anomaly Detection

An event selected by an autoencoder-based anomaly detection hardware triggering algorithm in the 
CMS Experiment, [https://cds.cern.ch/record/2876546] 



CWoLa in action: tt+bb

 Multijet background is hard to model – learn 
a classifier directly from data using jet 
substructure to make two samples and use jet 
kinematics to train the CWoLa classifier 

Phys. Lett. B 803 (2020) 135285 



Other Unsupervised Bump Hunts
 ANODE: interpolates probability densities from sidebands to the signal-region & constructs 

likelihood ratio [Nachman, Shih: 2001.04990] 

 CATHODE: samples from the background model in signal region after interpolating and 
estimates likelihood ratio with classifier [Hallin et al: 2109.00546]

 SALAD: Reweight simulation to match sidebands, then interpolate into the signal region and 
use a second classifier to get the likelihood ratio [Andreassen et al: 2001.05001] 

 CURTAINS: Train an invertible neural network conditioned on mass to map between 
sidebands [Raine et al: 2203.09470] 

 FETA: Map simulation to data in sidebands, then compare to SR data [Golling et al: 
2212.11285]


