From Model-Agnostic Searches to Unfolding: Deep Learning in Particle Physics

Monalisa Patra IHub-DATA, IIIT Hyderabad 10-08-2024

Frontiers in Particle Physics 2024 IISC, Bangalore

Outline

- Model Agnostic New Physics search
- ▶ Detector Simulation Framework
- Unfolding

New Physics?

- Copious amounts of data are generated at the LHC, making the discovery potential for new physics enormous .
- Despite thousands of searches for new physics at the LHC, all we have are limits and null results.

J. Kim, K. Kong, B. Nachman, D. Whiteson, 1907.06659

■ What if new physics is hiding in the data but we haven't looked in the right places yet?

Model-Agnostic Searches

Nachman and Shih, 2001.04990

■ Can we search for new physics more model-independently and fill all the gaps in our coverage?

(a) Signal sensitivity

Model-Agnostic Searches

Nachman and Shih, 2001.04990

■ Can we search for new physics more model-independently and fill all the gaps in our coverage?

(a) Signal sensitivity

Model-Agnostic Searches

Nachman and Shih, 2001.04990

Direct Density estimation, Sideband

signal model independence

 Can we search for new physics more model-independently and fill all the gaps in our coverage?

Autoencoders (AEs) as Anomaly Detectors

 Autoencoders work by learning compression to a latent space which preserves the original information.

- The reconstruction fidelity gives an anomaly score.
- Variational AE has encoder, decoder architecture like AE. Encoder of VAE attempts to generate parameters of the parametric probability distribution in latent space. Typically, distribution is chosen to be gaussian.

Unsupervised Anomaly Detection

Events

ATLAS-CONF-2023-022

- Not relying on specific signal hypothesis 10^{-1} model independent search.
- Unsupervised anomaly detection trained on

CWOLA Bump Hunt – Weak Supervision $\frac{Mixed\ Sumber$ $\frac{Mixed\ Samp}{}$ $\frac{Mixed\ Samp}{}$ $\frac{Mixed\ Samp}{}$ $\frac{Mixed\ Sap}{}$

- Trained on two data samples with different signal fractions.
- Classifier is also optimal for distinguishing signal vs background because optimal classifier is the likelihood ratio. \int

CWoLA Bump Hunt – Weak Supervision

- Trained on two data samples with different signal fractions.
- Classifier is also optimal for distinguishing signal vs background because optimal classifier is the likelihood ratio. \int s
- Can also be used for a weakly supervised bump hunt:
	- Train a classifier between signal region and side bands
	- Apply a threshold cut on the classifier output and perform a bump hunt

s

(S)

[Collins et al: 1902.02634]

LHC Run3

Annual CPU Consumption [MHS06years]

- At the end of LHC Run3, the computational needs will exceed the available budget.
- A large fraction goes into simulation.

CERN-LHCC-2020-015; LHCC-G-178

Figure 1: ATLAS CPU hours used by various activities in 2018

Wall clock consumption per workflow

LHC Run3

Annual CPU Consumption [MHS06years]

- At the end of LHC Run3, the computational needs will exceed the available budget.
- A large fraction goes into simulation.

Figure 1: ATLAS CPU hours used by various activities in 2018 CERN-LHCC-2020-015; LHCC-G-178

Calls for Detector Simulation which

will be fast and faithful

Wall clock consumption per workflow

Deep Generative Models

Sampling from Noise

Source distribution

Target distribution

Learns the distribution of data and generates new data from the distribution.

Deep Generative Models

- Generative Adversarial Networks (GANs) are a way to make Sampling from Noise a generative model by having two neural networks compete with each other
- Generator: generates fake samples, tries to fool the Discriminator
- **Discriminator:** tries to distinguish between real and fake samples
- Train them against each other
- Repeat this and we get better Generator and Discriminator

Learns the distribution of data and generates new data from the distribution.

GANs

https://research.nvidia.com/publication/2018-04_progressivegrowing-gans-improved-quality-stability-and-variation

GANs

https://research.nvidia.com/publication/2018-04_progressivegrowing-gans-improved-quality-stability-and-variation and $\frac{a}{\frac{a}{\xi}}$,

GANs

https://research.nvidia.com/publication/2018-04 progressivegrowing-gans-improved-quality-stability-and-variation and a set of $\frac{a}{\frac{a}{8}}$.

 GANs have been demonstrated to be capable of reproducing Geant4 calorimeter images with reasonable accuracy (both at the individual image level and at the distributional level), while gaining up to 5 orders of magnitude in computational speed.

Plot from Claudius Krause's slide

Normalizing Flows

 A transformation of a simple probability distribution into a more complex distribution by a sequence of invertible and differentiable mappings.

Normalizing Flows

 A transformation of a simple probability distribution into a more complex distribution by a sequence of invertible and differentiable mappings.

Probability Transformation in NFs Learn $f(x)$ to transform $p_x(x)$ to $p_z(z)$

https://mbrubake.github.io/cvpr2021-nf in cv-tutorial/Introduction%20-%20CVPR2021.pdf

Volume correction $p_X(x) = p_Z(f(x)) |\text{det}[(f(x))|$ Invertible, differentiable function

Building Flows by Composition

- Invertible, differentiable functions are closed under composition.
-

CALOFLOW

Flow I

earns $p_1(E_0, E_1, E_2|E_{tot})$

Flow II

learns $p_2(\vec{x}|E_0, E_1, E_2, E_{tot})$ of normalized showers Claudius Krause and David Shih, 2106.05285

CaloGAN: [1705.02355; 1712.10321]

CALOFLOW

Flow I

learns $p_1(E_0, E_1, E_2|E_{tot})$

Flow II

- **learns** $p_2(\overrightarrow{\mathfrak{X}}|E_0,E_1,E_2,E_{tot})$ **of normalized showers** $p_2(\overrightarrow{\mathfrak{X}}|E_0,E_1,E_2,E_{tot})$ **of normalized showers** $p_2(\overrightarrow{\mathfrak{X}}|E_0,E_1,E_2,E_{tot})$ **PERIMENT ASSAURE 1.** $E_1, E_2 | E_{tot}$
 11
 11
 12
 13
 14
 14
- \blacksquare in CALOFLOW v1:
	-
	- Impressive quality!

CaloGAN: [1705.02355; 1712.10321]

Claudius Krause and David Shih, 2106.05285

Average shower shapes for e^+ . Columns are calorimeter layers 0 to 2
Claudius Krause and David Shih, 2106.05285

Claudius Krause and David Shih, 2106.05285

Unfolding at the LHC

■ Classifier based approach

• Density based approach

■ Classifier based approach
OmniFold [1911.09107], Profiled Unfolding [2302.05390]
■ Density based approach
FCGAN [1912.00477], cINN [2006.06685], IcINN [2212.08674], OTUS [2101.08944]

Measurements are affected by detector effects of finite resolution and limited acceptance.

1. Learn detector response from trustable simulation

3. Goal of unfolding is to $\begin{bmatrix} \overline{a} \\ \overline{b} \\ \overline{c} \end{bmatrix}$ learn a generative particle-level model that reproduces the data

2. Truth-level measurements can be compared across experiments and to theoretical calculations

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107

Weights $w(x) =$ $q(x)/p(x)$ so that when dataset A is weighted by w , it is statistically identical to dataset B.

What if we don't (and can't easily) know $q(x)$ and $p(x)$?

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107

Weights $w(x) =$ $q(x)/p(x)$ so that when dataset A is weighted by w , it is statistically identical to dataset B.

What if we don't (and can't easily) know $q(x)$ and $p(x)$? $q(x)/p(x)$ Detector-level

Particle-level

Truth

CEANT, DELPHES PYTHIA, HERWIG, SHERPA

GEANT, DELPHES PYTHIA, HERWIG, SHERPA

Simulation

Simulation

Ceneration

Ceneration

Ceneration

Ceneration

Ceneration

Ceneration

Ceneratio Dataset A with points
sampled from $p(x)$ $\frac{1}{z}$ sampled from $p(x)$ ATLAS, CMS Dataset B with points
sampled from $q(x)$ sampled from $q(x)$

Andreassen, Nachman, PRD RC 101 (2020) 091901

Weights $w(x) =$ $q(x)/p(x)$ so that when dataset A is weighted by w , it is statistically identical to dataset B.

Use classification to train a neural network to distinguish the two datasets, NN learn to approximate the likelihood ratio

OmniFold Equations

Inputs

niFold Equations

Inputs

— pairs of Gen and Sim events

— initial particle-level weights for Gen — Data $\begin{array}{ccc}\n\text{min} \\
\text{limits} \\
\text{- pairs of Gen and Sim events} \\
\text{- initial particle-level weights for Gen-Data}\n\end{array}\n\qquad\n\begin{array}{ccc}\n\text{Dett} \\
\text{partial} \\
\$

1 million and Sim events

1 million and Sim events

1 million particle-level weights for Gen – Data

1 million particle-level weights for Gen, nth iteration

1 million particle-level weights for Sim, nth iteration

1 n lnputs

– pairs of Gen and Sim events

initial particle-level weights for Gen – Data

particle-level weights for Gen, nth iteration

– detector-level weights for Sim, nth iteration

– $\omega_n(m)$ – pulling ω_n back

Inputs

and Sim events

e-level weights for Gen – Data

I weights for Gen, nth iteration

wel weights for Sim, nth iteration

– pulling ω_n back to particle-level

- pushing ν_n to detector-level **Inputs**

In and Sim events

Ile-level weights for Gen – Data

Il weights for Gen, nth iteration

evel weights for Sim, nth iteration

– pulling ω_n back to particle-level

– pushing ν_n to detector-level
 OmniFo

 $n(M)=v_{n-1}$ (*III*) \times L (1, Data) push $(m) \vee$ \lceil (1 Dota) \lceil $n-1$ ^{, $\frac{\sin\left(\frac{\pi}{2}\right)}{\pi}$} push $\lim_{m \to \infty}$ \int $\lim_{m \to \infty}$ $\mathbf{v}_n(t) = \mathbf{v}_{n-1}(t) \times \mathbf{L}[\mathbf{w}_n]$, Gen), (\mathbf{v}_{n-1} , Gen pull $C_{\alpha n}$ ($_{n-1}$, Gen)](ι)

Synthetic Simulation

1911.09107

Unfold any observable $p_{Gen}(t)$ using universal weights $v_n(t)$

unfolded $\mathcal{V} = \mathcal{V}_n(\mathcal{V}) \wedge \mathcal{V}$ Gen \mathcal{V} n) $(t) = u(t) v_3$ $n(t) \times p_{Gen}(t)$

OmniFold Andreassen, Komiske, Metodiev, Nachman, Thaler,

-
-

Andreassen, Komiske, Metodiev, Nachman, Thaler, 1911.09107

Summary/Outlook

■ There is a substantial ongoing work in model agnostic searches, and its exciting to see it starting to be used in experimental results.

[ATLAS: 2005.02983, ATLAS-CONF-2022-045, ATLAS-CONF-2023-022, CMS-DP-2022-021, CMS-DP-2022-043….]

- Techniques, like generative models, are paving the way for more efficient and realistic simulations, reducing computational costs and expanding the scope of theoretical investigations.
- Density estimation-based models like normalizing flows/diffusion models (that can efficiently map a simple distribution to a target one) are being used for detector simulation.

Training Discriminator

update discriminator weights

OmniFold - Schematic
• OmniFold weights particle-level Gen to be consistent with Data once passed through the OmniFold - Schematic
• OmniFold weights particle-level Gen to be consistent with Data once passed through the
Detector Detector-level Particle-level detector

Training Generator

weights

Real time Anomaly Detection

An event selected by an autoencoder-based anomaly detection hardware triggering algorithm in the CMS Experiment, [https://cds.cern.ch/record/2876546]

 \triangleright Multijet background is hard to model – learn
a classifier directly from data using jet
substructure to make two samples and use iet a classifier directly from data using jet substructure to make two samples and use jet Multijet background is hard to model – learn
a classifier directly from data using jet
substructure to make two samples and use jet
kinematics to train the CWoLa classifier

Phys. Lett. B 803 (2020) 135285

Other Unsupervised Bump Hunts

- ANODE: interpolates probability densities from sidebands to the signal-region & constructs likelihood ratio [Nachman, Shih: 2001.04990] Jther Unsupervised Bump Hunts
ANODE: interpolates probability densities from sidebands to the signal-re
likelihood ratio [Nachman, Shih: 2001.04990]
CATHODE: samples from the background model in signal region after inte
es
- CATHODE: samples from the background model in signal region after interpolating and likelihood ratio [Nachman, Shih: 2001.04990]

CATHODE: samples from the background model in signal region after interpolating and

estimates likelihood ratio with classifier [Hallin et al: 2109.00546]

SALAD: Reweight simu
- SALAD: Reweight simulation to match sidebands, then interpolate into the signal region and
- **CURTAINS:** Train an invertible neural network conditioned on mass to map between sidebands [Raine et al: 2203.09470] FETA: Reweight simulation to match sidebands, then interpolate into the signal region and
use a second classifier to get the likelihood ratio [Andreassen et al: 2001.05001]
FETA: Train an invertible neural network conditio
- 2212.11285]