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f{θ} ( )

ML@Natural-Science : what’s the broad task? 
1. Decide the right representation  
of the data (images/graphs/trees..)

2. Choose a NN model 
(CNN/GNN/)

f{θ} (X)
̂y =

3. With a defined learning task, 
compute the loss function. 

Variation in data

Unsupervised Semi-supervised Weakly-supervised Supervised

No-labels, the task is to 
figure out  from which 
the data is drawn. e.g. VAE

p(x)
Noisy labels. estimate : 

p(s-enriched)/p(s-depleted)

Partial labels. e.g. 
simulating : SM bkg vs 
many NP signals. 

Learning on all the well 
labeled data. 

L(y, ̂y) ≡ L({θ})
Self-supervised
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f{θ} ( )

Different physics : same ML problems 
1. Decide the right representation  
of the data (images/graphs/trees..)

2. Choose a NN model 
(CNN/GNN/)

f{θ} (X)
̂y =

3. With a defined learning task, 
compute the loss function. 

Variation in data

Unsupervised Semi-supervised Weakly-supervised Supervised

No-labels, the task is to 
figure out  from which 
the data is drawn. e.g. VAE

p(x)
Noisy labels. estimate : 

p(s-enriched)/p(s-depleted)

Partial labels. e.g. 
simulating : SM bkg vs 
many NP signals. 

Learning on all the well 
labeled data. 

L(y, ̂y) ≡ L({θ})
Self-supervised
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arXiv : 2204.13713, Camel’s simulation



This talk is about ……
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Classification/ 
Regression

Unsupervised  
Learning

Generative  
Models

Simulation Based 
Inference

Differentiable  
programming

Images Sets Graphs/ 
Heterographs

Hypergraphs/ 
Combinatorial complexes

- - - - -

- -
 - 

- 



Data representation  NN correspondence⇔
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J = {pμ
1 , pμ

2 , …}
Ordered set 
DNN

Grid 
CNN

Unordered set 
Deepest

Sequential data 
RNN

Tree structure 
Deepset/GNN

Graph 
GNN
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Early jet tagging
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J. Cogan et-al JHEP 02 (2015) 118

L. De Oliveira et-al JHEP 07 (2016) 069

The first paper to discuss 

 image pre-processing for jet physics

Similar methods were applied for particle identifications
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CMB spectrum cleaning using NN 
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The Astrophysical Journal, 903:104 (8pp), 2020 November 10
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Super-resolution  
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MNRAS 000, 000–000 (2022)

SR model is capable of generating  
merger histories that are solely dependent on  
on time-consistent LR input
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A super-resolution case for HEP

The networks in general have good  
noise removal abilities. 

8 X 8 Low Res detector 32 X 32 High Res detector
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The general GNN arXiv : 1806.01261

Full GN block MPNN Layer Deep-set layer
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GNN in Cosmology arXiv : 2204.13713
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Poisson process

Neyman Scott 

Soneira-Peebles 
fractal hierarchical 
clustering 
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GNN in Cosmology : LOS velocity 

arXiv : 2402.1239

Sanmay Ganguly (IITK)

A 6% improvement was achieved by including galaxy masses.  

GNN can overcome the shortcoming of explicit galaxy bias.  

(Required by perturbation theory based methods) 
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GNN in HEP 
FTAG-2023-001
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Jet tagging is  
revolutionized  
by GNN
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://cds.cern.ch/record/2866276/files/BTV-22-001-pas.pdf
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Direct physics application of the taggers

Future direction of tagger improvement:  

1. Explainable taggers on heterogeneous pc 
2. A systematic uncertainty extraction. 
3. How much universal taggers can be 

made across topologies? 

ATLAS bound : |κc | < 4 . 2
CMS bound : 1 . 1 < |κc | < 5 . 5

Future iteration will use GN2
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0 5 10 15 20 25 30 35 40

)c c→VH(H 
µ95% CL limit on 

Observed 14.4
Expected 7.60
Combined

Observed 16.9
Expected 8.75
Merged-jet

Observed 13.9
Expected 19.0
Resolved-jet

Observed 18.3
Expected 12.6
0L

Observed 19.1
Expected 11.5
1L

Observed 20.4
Expected 14.3
2L

Observed Median expected
                      68% expected   
                      95% expected   

CMS
 (13 TeV)-1138 fb

Phys. Rev. Lett. 131 (2023) 061801 
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http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-008/
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SBI in Cosmology 
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Likelihood free inference  
is state of the art
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SBI in HEP
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Generative models : what are they? 
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http://www.lherranz.org/2018/08/07/imagetranslation/

https://lilianweng.github.io/posts/
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https://lilianweng.github.io/posts/
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Generative models : the popular species 

Sanmay Ganguly (IITK)
Fig from : https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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This universe doesn’t exist  arXiv : 2206.04594
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The performance
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The major gain
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arXiv : 2109.02551

arXiv : 2305.10475
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Differentiable programming
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Differentiable programming allows us to configure our analysis 
optimization in learnable  https://mode-collaboration.github.io/
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Major thrust in immediate future : Interpretability 

Interpretability is a key issue and efforts are ongoing to map the NN 
explainability to first principle physics intuition
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Interpretability : an example attempt  
Neur IPS 2021. F. Mokhtar, R. Kansal et al 

Explainability for MLPF

Feature correlation for 
top tagging.

arXiv 2210.04371 
Ayush Khot, Mark S. Neubauer, Avik Roy 
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https://arxiv.org/search/hep-ex?searchtype=author&query=Khot,+A
https://arxiv.org/search/hep-ex?searchtype=author&query=Neubauer,+M+S
https://arxiv.org/search/hep-ex?searchtype=author&query=Roy,+A
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Major thrust in immediate future : Uncertainty 

Reliable uncertainty estimation on ML based predictions are crucial for HEP 
Only few Bayesian methods have been tested naively.

Can we decompose and correlate the aleatoric and epistemic uncertainties  
with the underlying physics? 
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Major thrust in immediate future : Uncertainty 
arXiv:2107.03342
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https://arxiv.org/abs/2107.03342
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An example of next frontiers 
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https://pyt-team.github.io/toponetx/
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An example of next frontiers 
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Better interpretability through KAN ?
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Let’s formulate the questions

ML is here to stay with HEP/Cosmology and other branches of natural sciences.  

When looked through the lens of ML, it’s  about finding the right inductive bias for a prob. distribution 

Interpretability and uncertainty estimation is a corner stone which we should emphasize.  

The HEP community should talk with mathematicians/comp-sc and other branches of natural science  
 who are using the similar methods and exchange ideas.   

https://iml-wg.github.io/HEPML-LivingReview/ 
https://github.com/georgestein/ml-in-cosmology

Image: FermiLab

THANK YOU
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https://iml-wg.github.io/HEPML-LivingReview/
https://github.com/georgestein/ml-in-cosmology

