
Geant-val Progress Report

- Alok Mathur
 CERN EP-SFT

Introduction about Project

● I am working on developing a web application for Geant4 validation.

● The Geant-val web application serves as a centralized platform for

visualizing and comparing results from community-developed tests

run on Geant4's development releases, crucial for ensuring the

reliability of Monte Carlo simulations in physics.

● Geant-val validates simulations by comparing them to experimental

data, ensuring accuracy in modeling physical phenomena.

Software Components

● The database is used for storing plots containing simulation results or

experimental data, together with metadata describing these plots. PostgreSQL is

used as database management system for the application. The database instance

is provided by the CERN Database On-Demand service. The database schema is

designed in a way to store scatter plots and histograms with unlimited number of

optional test parameters in additional to a few mandatory ones.

● The server is the core of the Geant4 validation system. It provides a web API that

allows clients to access the database, asynchronously responds to the clients

requests and generates high quality plots "on the fly" whenever they are

requested. The server is written in JavaScript and runs with the Node.js engine.

● The Web interface is an ReactJS single page application which shows plots with

tests results together with statistical analysis

Modules in the Website

The Geant-val website provides two ways of viewing and comparing results:
Statistical comparisons page allows comparison of simulation with compatible experimental results using a
selection of statistical test.
User Layouts It can be useful for Geant4 tests that produce hundreds of different plots, but for whose fast
"visual" validation it is often enough to compare only a small well-defined subset of them.
Lookup Tables
The metadata associated with the database i.e. the available versions, models etc.
Summary
A section summarising the various tests and versions associated to them.

Module 1 - User Layout Section

Module 1 Ctd…
● The user selects the desired layout, Geant4 version(s), physics list(s) and experimental

data.
● It allows performing fast visual comparison of several Geant4 versions/physics lists.
● Now after selecting the required options a JSON object is created and is used as an

API for the ROOT C++ plotting utility.
{
 "selectedTestId": 129,
 "fileName": "brachy.xml",
 "selectedModels": [
 {
 "mctool_model_name": "emstandard_opt0"
 }
],
 "isMarkerSelected": true,
 "selectedVersions": [
 {
 "mctool_name_version_id": 348,
 "version": "11.2.p01"
 },
 {
 "mctool_name_version_id": 240,
 "version": "10.6"
 }
],
 "references": [
 {
 "expname": "D. Granero et al",
 "abstract": "A dosimetric study on the Ir-192 high dose rate
flexisource."
 }
]
}

Module 1 - Ctd…

● A ROOT-based C++ plotting utility was developed to produce high quality plots. It

uses data in the JSON format which has been introduced as main interchange

format between all parts of the application.

● It supports all types of application’s data, can plot histograms with different

binning on one canvas, and produce ratio plots. Ranges and scales of plot axes are

selected automatically, but can be overridden if necessary.

● For plotting the JSROOT graphs, the ROOT binary file generated from plotting the

above graph is used.

● npm package of JSROOT is used to plot the JSROOT graph.

● ROOT files along with the images generated are cached in the server side and are

used if we get the same user input. So, that facilitates the faster retrieval of graphs.

And also saves a lot of computation.

Module 1 - Ctd…

Module 1 - Ctd…

JSROOT PlotROOT Plot

Module 2 - Stat Comparison Section

Module 2 - Ctd…

● Various tests and the associated metadata is shown and after the

user selects certain tests it allows comparison of simulation with

compatible experimental results using a selection of statistical tests.

● In this only 2 versions associated to a Geant4 test are used for

comparison.

● The page shows results of Chi-squared test, Kolmogorov test and

Maximal relative difference test.

● All computations are fast and performed asynchronously on the

client side using JavaScript WebWorkers. For this purpose,

JavaScript code to perform χ2 and Kolmogorov-Smirnov tests has

been written

Module 2 - Ctd…

Module 3 - Lookup Tables Section

Module 3 - Ctd…

The information stored in these tables are shown to user for reference.

● Tools

● Tests

● Observables

● Physics Model

● Versions

● Target

● Particles

● Articles

Module 4 - Summary Section

Deployment & CI/CD Pipeline
● For deployment the software used is OKD by Redhat for the deployment of the website,

OKD, formerly known as OpenShift Origin, is an open-source distribution of

Kubernetes, which is a popular container orchestration platform. Developed and

maintained by Red Hat, OKD provides a platform for deploying, managing, and scaling

containerized applications.

● The created CI/CD pipeline contains 3 stages and 6 jobs associated to it

Deployment & CI/CD Pipeline
Stages Definition

● The pipeline is divided into three stages: dev, dockerize, and deploy. The dev stage is

used for building the frontend and backend applications. The dockerize stage is

responsible for creating Docker images for both the frontend and backend. The deploy

stage is where the Docker images are deployed to the development environment.

Build Frontend

● The build-frontend job in the dev stage uses the node:18.17.1 image. It navigates to the

gvp3-frontend directory, installs dependencies with npm install, and builds the frontend

with npm run build. It caches the node_modules directory and stores the build output as

artifacts.

Deployment & CI/CD Pipeline
Build Backend

● The job named build-backend is also part of the dev stage and uses the Node.js image

node:14.17.0. The script for this job involves navigating to the gvp3-backend directory and

installing the required dependencies with npm install. Similar to the frontend build, a cache is set

up with the key $CI_COMMIT_REF_NAME to cache the gvp3-backend/node_modules/ directory,

speeding up subsequent builds.

Build Frontend Docker Image

● The dockerize-frontend job in the dockerize stage uses the

gitlab-registry.cern.ch/ci-tools/docker-image-builder image. It depends on build-frontend, sets

the image destination as ${CI_REGISTRY_IMAGE}/frontend:latest, and uses

Kaniko(https://github.com/GoogleContainerTools/kaniko) to build and push the Docker image

from gvp3-frontend/devops/Dockerfile.

https://github.com/GoogleContainerTools/kaniko

Deployment & CI/CD Pipeline
Build Backend Docker Image

● The dockerize-backend job in the dockerize stage also uses

gitlab-registry.cern.ch/ci-tools/docker-image-builder. It depends on build-backend, sets the image

destination as ${CI_REGISTRY_IMAGE}/backend:latest, and uses Kaniko to build and push the

Docker image from gvp3-backend/Dockerfile.

Deploy Frontend

● The deploy-dev-frontend job in the deploy stage depends on dockerize-frontend. It uses the

gitlab-registry.cern.ch/paas-tools/openshift-client:latest image. It imports the Docker image to

OpenShift, waits for 15 seconds, and checks the rollout status. This job is manually triggered.

Deploy Backend

● The deploy-dev-backend job in the deploy stage depends on dockerize-backend. It uses the

gitlab-registry.cern.ch/paas-tools/openshift-client:latest image. It imports the Docker image to

OpenShift, waits for 15 seconds, and checks the rollout status. This job is also manually triggered.

Deployment & CI/CD Pipeline
kind: Deployment

apiVersion: apps/v1

metadata:

 annotations:

 alpha.image.policy.openshift.io/resolve-names : '*'

 app.openshift.io/route-disabled: 'false'

 deployment.kubernetes.io/revision: '44'

 image.openshift.io/triggers:

'[{"from":{"kind":"ImageStreamTag","name":"frontend:latest","namespace

":"gvp3"},"fieldPath":"spec.template.spec.containers[?(@.name==\"front

end\")].image","pause":"false"}]'

 openshift.io/generated-by: OpenShiftWebConsole

 resourceVersion: '2699056841'

 name: frontend

Challenges Faced
Improper documentation for deploying a web app on OKD platform, the only documentation

given is PAAS docs (https://paas.docs.cern.ch/) which wasn’t sufficient for deploying the JS web

app for both Frontend and Backend.

Solution -> Creating a documentation of how to deploy a Web Application using the OKD

platform.

https://paas.docs.cern.ch/

Demonstration
Can view the website at cern.ch/gvp3

(or) can scan the below QR Code

http://cern.ch/gvp3

Thank You

