

Enabling Grids for E-sciencE

Demo Session

Introduced by Massimo Lamanna NA4 HEP coordinator - CERN

EGEE-II 1st EU Review (CERN) 15-16 May 2007

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks

• Why a demo session?

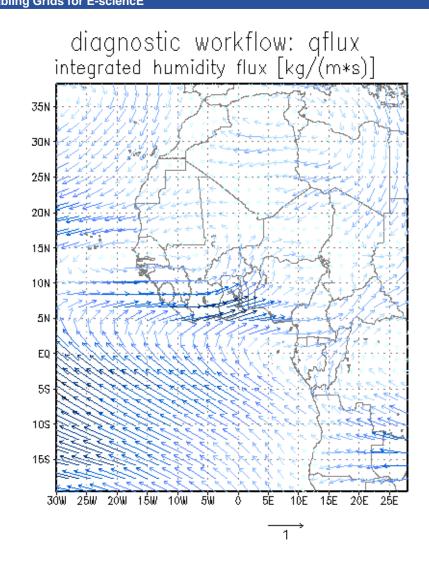
- A good demo is an important tool to
 - Exchange views and experience on the grid added value for applications
 - Attract new users by clear exposition of the advantages of the grid for given applications

Three demos today

- Intelligent Distributed Data Management Enabling consistent collaborative data use in Earth Science
 - Earth Sciences community
 - Kerstin Ronneberger and Stephan Kindermann (DKRZ, Hamburg)
- Wisdom Production Environment Search of drugs against Malaria and BirdFlu
 - Biomedical community
 - Jean Salzemann and Vincent Bloch (IN2P3 Clermont-Ferrand)
- Dashboard Integrated monitor of large grid communities
 - High-Energy Physics community
 - Julia Andreeva and Pablo Saiz (CERN)

- Grid added value
 - Ease daily workflows and support collaborative work (Climate Data Management)
 - Access a new scale of processing and data sharing (WISDOM)
 - Monitoring of applications contributing to the grid evolution (Dashboard)
- Relevance
 - All activities are part of leading-edge research in the corresponding fields
- Examples of cross-applications collaboration
 - Sharing experience, tools and actual software solutions ...enabled by EGEE!

Intelligent Distributed Data **Management in Earth system science**


K. Ronneberger, DKRZ, Germany S. Kindermann, DKRZ, Germany B. Bräuer, AWI, Germany T. Brücher, ZAIK, Germany H. Ramthun, M&D, Germany M. Stockhause, MPI-Met, IFM-GEOMAR, Germany

www.eu-egee.org

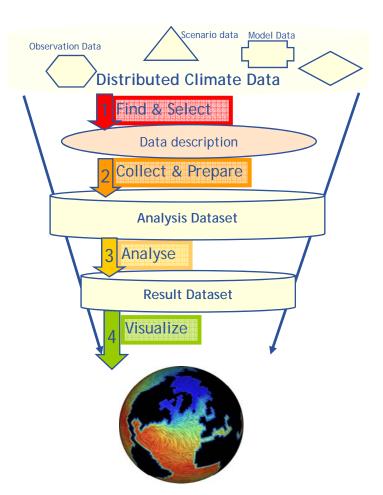
GGCC QFLUX: Humidity flux calculation

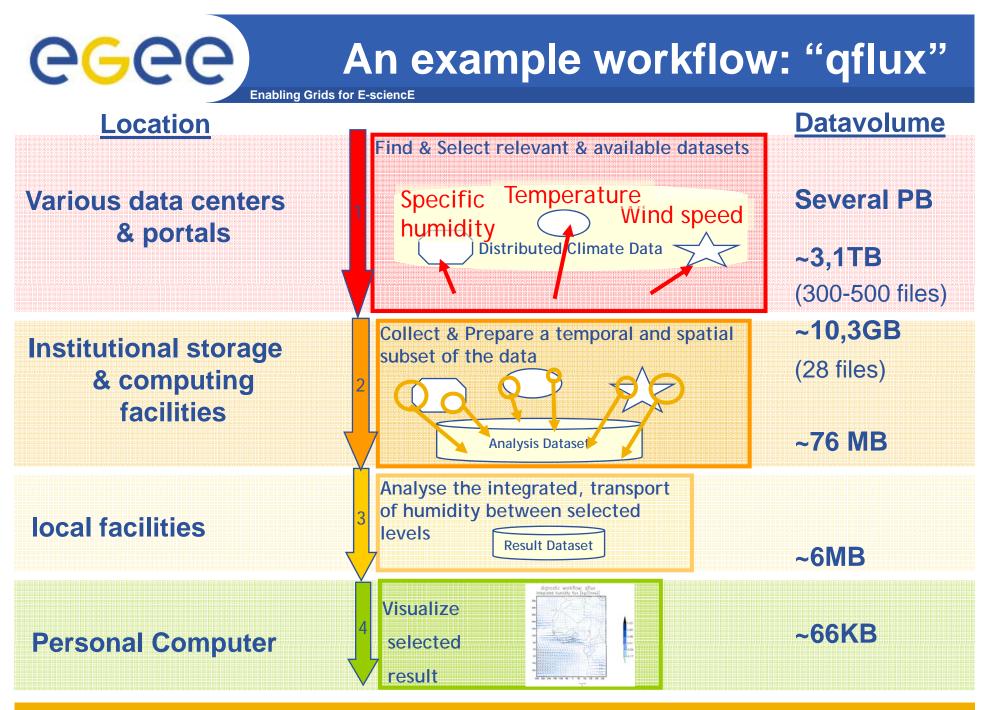
data: 1999/1999 - months: 6 to 9 - produced in: EGEE / 20070430 - 07:37:23 UTC -Tim Brücher, ZAIK, bruecher@uni-koeln.de

EGEE-II INFSO-RI-031688

NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007

6


- What is Earthsystem Science about?
 - Typical workflows
 - Traditional infrastructure
- Where can grid-technology help?
 - Limits of the current practice
- How do we use this technology?
 - Demo of the portal
 - Demo of an example workflow
 - Outline of the developed infrastructure
- What is still missing
 - Next steps and challenges



Earthsystem Sciences

- Goal: learn about the past, the present, and possible futures of the earth system
- Community: internationally and interdisciplinary distributed but strongly interconnected
- Method: Analysing, comparing and processing data
- Input: data from observations and/or other modelling studies

Typical workflow

EGEE-II INFSO-RI-031688

NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007 9

Potential use of grid technology

Enabling Grids for E-sciencE

Current issues

Search & select

eeee

 Different portals with different authentications and data descriptions

Collect & prepare

- Different access mechanisms of the different providers
- Pre-processing requires sufficient local facilities

Analyse

Existing tools and already processed data are available locally and miss proper description

Visualize

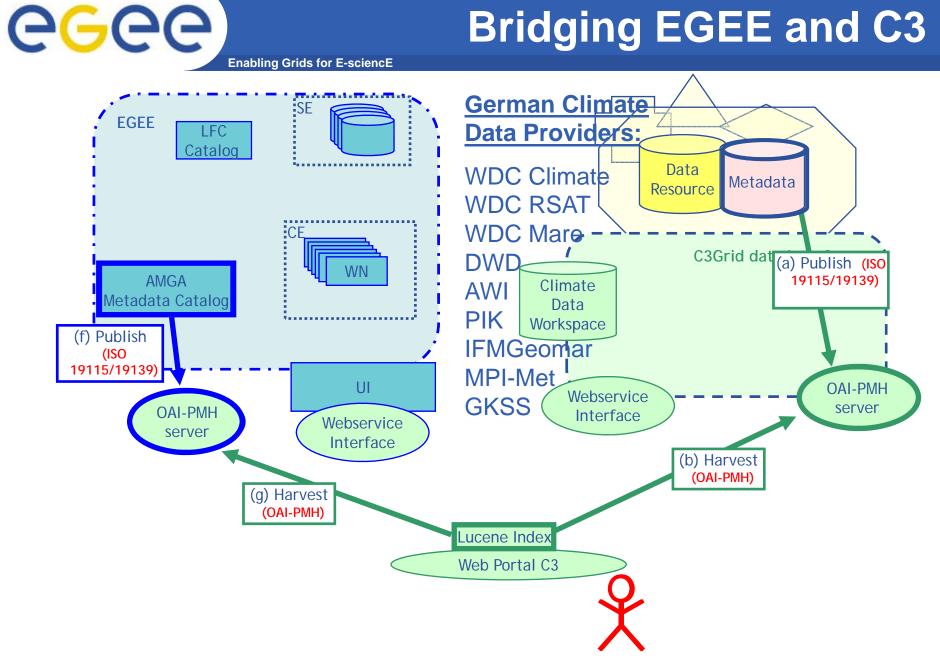
 Detached from the remaining workflow • **Central unique authentication** to a common catalogue with **standardized metadata**

• Shared resources with standardized access hiding proprietary access mechanisms

- Commonly defined tool description
- Log processing steps and automatically republish processed data
- Integrate basic visualization (first peep) into the workflow

EGEE-II INFSO-RI-031688

C3 Grid and EGEE - the components


Enabling Grids for E-sciencE

- Central web-portal: unique entrance point to common central metadata catalogue (Lucene index) and access facility
- Standardized Metadata: hierarchical description of discovery- and some use-aspects of the data (ISO 19115/ISO 19139)
- Standardized data request interface: hide the complexity of specific data access mechanisms and pre-processing functionality (webservice technology)
- Automatic update and republishing of metadata: metadata of data processing is updated, managed and can be harvested (AMGA + java extension, OAI-PMH server)

EGEE-II INFSO-RI-031688

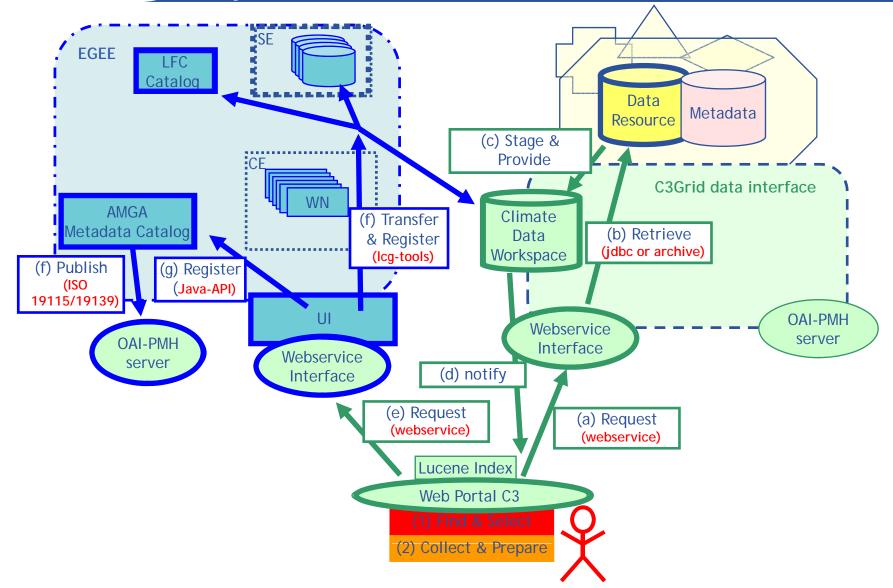
ege

Bridging EGEE and C3

(1) Search-, discover-, and selectfunctionality of the portal

(2) Upload and register data to EGEE

(3) Trigger the example workflow qflux from the portal

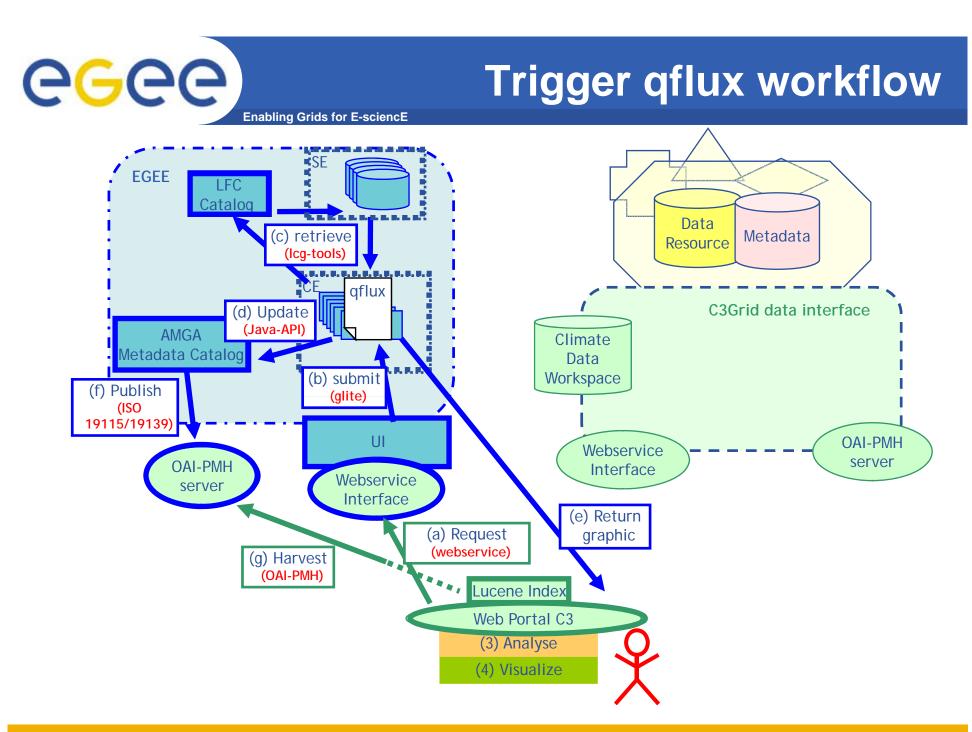

(1) Search-, discover-, and selectfunctionality of the portal

(2) Upload and register data to EGEE

(3) Trigger the example workflow qflux from the portal

Upload pre-processed data to EGEE

Enabling Grids for E-sciencE


eGee

(1) Search-, discover-, and selectfunctionality of the portal (2) Upload and register data to EGEE

(3) Trigger the example workflow qflux from the portal

EGEE-II INFSO-RI-031688

CALCENT OF CONTROL OF

Enabling Grids for E-sciencE			
	Earth System Grid project (USA)	C3 Grid/(EGEE) (Germany)	NERC data grid (UK)
Scope (project)	High performance access of climate model data	Uniform & effective discovery and access of data of various disciplines & types	Harmonized & detailed search and access of data of various disciplines & types
Data stock (status)	HomogenousFlat-file storage	 Heterogeneous Databases & flat-file storage 	 Heterogeneous Databases & flat-file storage
Data description (solution)	 Use aspect of data, tools and models E.g. NcML for netCDF data 	 Discovery and some use aspects ISO 19115/ISO 19139 	 Content of the data in great detail Semantic datamodel (CSML, based on GML)
Data access (solution)	 Intelligence at portal Different protocols 	 Uniform access interface Intelligence at data provider / grid 	 link from portal to data provider Different protocols
EGEE-II INFSO-RI-031688 NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007 18			

- A framework to easily and consistently exchange and manage ES-data and tools between EGEE and traditional ES data-storage-systems
- Potential impact on current and potential EGEE EScommunity
- A framework to connect further portals or infrastructures to EGEE
- Potential impact on international ES-community
- Built on international standards thus easy adaptable/expandable by other disciplines and by further partners
- Potential impact on other disciplines

- Expand the demonstrated prototype to a reliable and stable system
- Porting further workflows and some preprocessing functionality to EGEE
- Enlarge the user community

GGCC Future challenges or missing bricks

- Comprehensive and consistent security context to control access to (restricted) data with a single sign-on
 - Approach: federated AA infrastructure based on Shibboleth
- Analysis-services description to improve discovery, use and share possibilities
 - Approach: adapt ISO19119/19139 as a common metadata format for analysis-tool description
- Modularized workflows to increase the flexibility and enable intelligent scheduling
 - Approach: implement a workflow information service

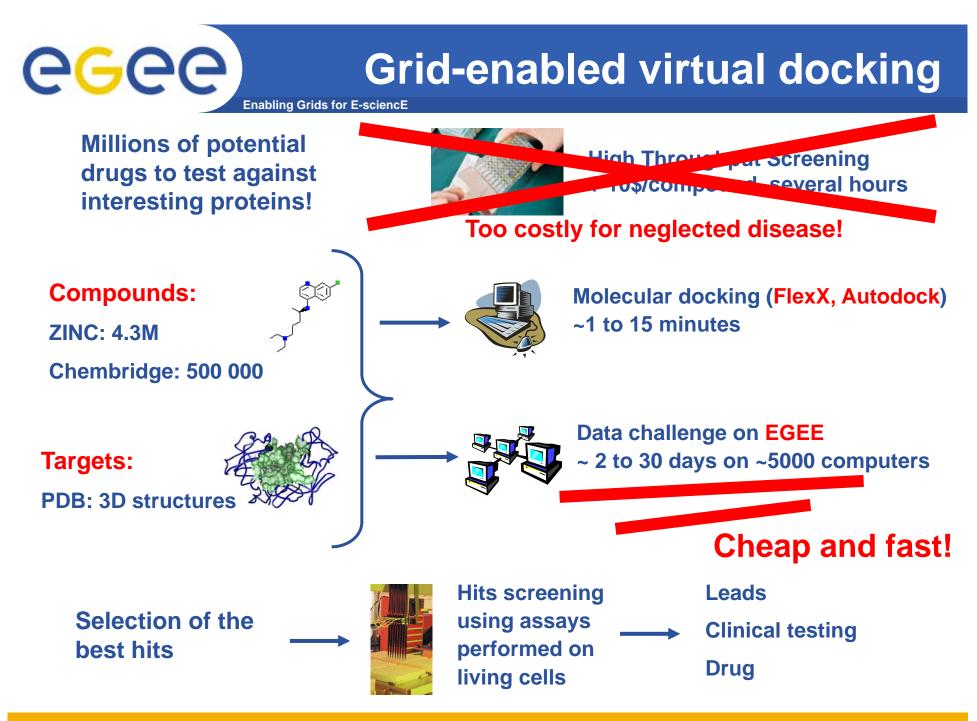
Thank you!

EGEE-II INFSO-RI-031688

NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007 22

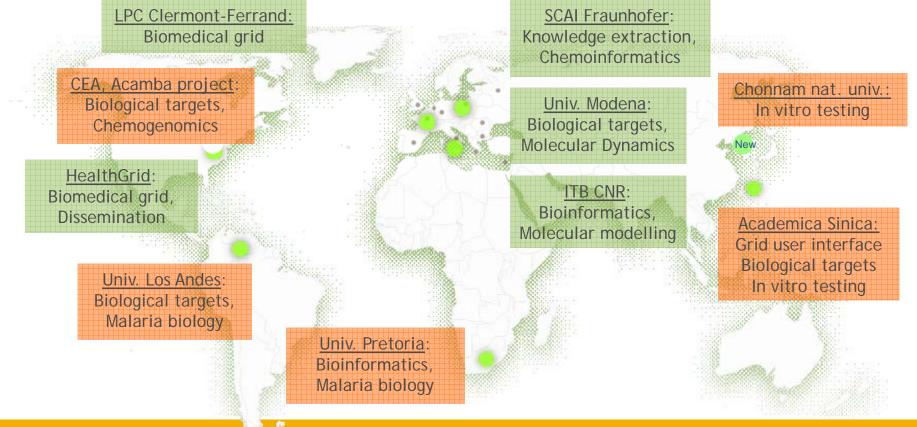
WISDOM: a large scale docking application on the grid

Vincent Bloch, Hurng-Chun Lee, Jean Salzemann LPC Clermont-Ferrand IN2P3/CNRS Academia Sinica, Taipei


www.eu-egee.org

EGEE and gLite are registered trademarks

- WISDOM stands for World-wide In Silico Docking On Malaria
- Goal: find new drugs for neglected and emerging diseases
 - Neglected diseases lack R&D
 - Emerging diseases require very rapid response time
- Method: grid-enabled virtual docking
 - Cheaper than in vitro tests
 - Faster than in vitro tests



EGEE-II INFSO-RI-031688

The grid added value

- Enabling Grids for E-sciencE
- The grid provides the centuries of CPU cycles required on demand
- The grid provides the reliable and secure data management services to store and replicate the biochemical inputs and outputs
- The grid offers a collaborative environment for the sharing of data in the research community on avian flu and malaria

- Enabling Grids for E-sciencE
- Objective
 - To dock a whole compound database in a limited time with a minimal human involvement
- Need for an optimized environment
 - To achieve production in a limited time
 - To optimize performances
- Need for a fault tolerant environment
 - To handle Grid heterogeneity and dynamics
 - To collect and store critical data
- Need for user-friendly high-level interfaces
 - To ease the execution
 - To offer a service to the non grid experts

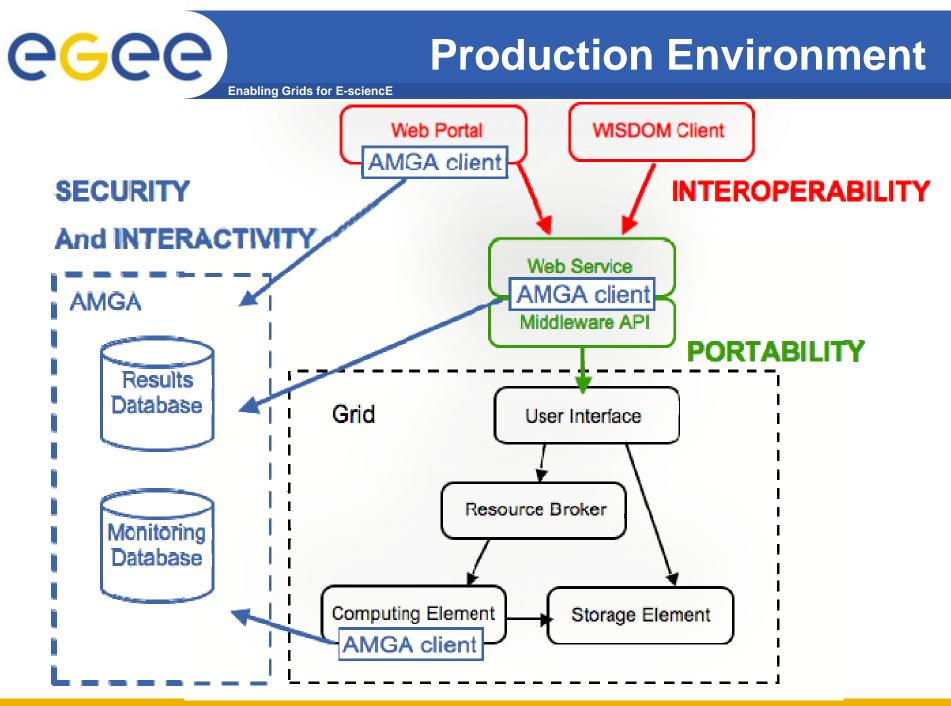
egee

Statistics of deployment

Enabling Grids for E-sciencE

- First Data Challenge: July 1st August 15th 2005
 - Target: malaria
 - 80 CPU years
 - 1 TB of data produced
 - 1700 CPUs used in parallel
 - 1st large scale docking deployment world-wide on a e-infrastructure
- Second Data Challenge: April 15th June 30th 2006
 - Target: avian flu
 - 100 CPU years
 - 800 GB of data produced
 - 1700 CPUs used in parallel
 - Collaboration initiated on March 1st: deployment preparation achieved in 45 days
- Third Data Challenge: October 1st 15th December 2006
 - Target: malaria
 - 400 CPU years
 - 1,6 TB of data produced
 - Up to 5000 CPUs used in parallel
 - Very high docking throughput: > 100.000 compounds per hour

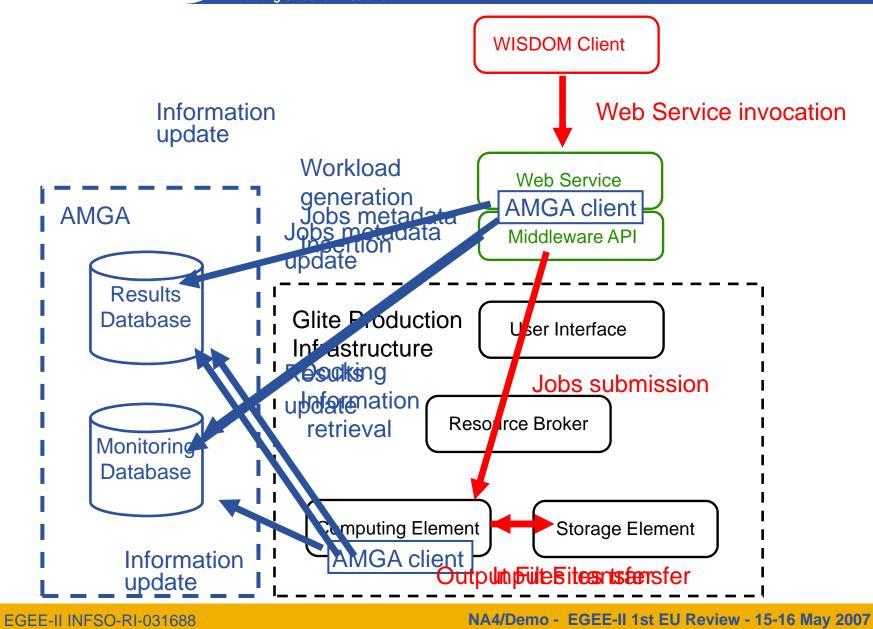
EGEE-II INFSO-RI-031688


NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007 28

Grid Statistics Portal

Available at http://wisdom-demo.healthgrid.org

- Real-Time monitoring of the Grid
- Customizable interface
- Drag and drop components



EGEE-II INFSO-RI-031688

Environment (2/2)

Enabling Grids for E-sciencE

Enabling Grids for E-sciencE

Available at http://t-ap41.grid.sinica.edu.tw:8088/WisdomPortal

- User-friendly Interface for biologists
- Real Time output of the results
 - 3D views of the docking poses and structures
- Resubmission and monitoring of docking jobs

egee

Encouraging biochemical results

Enabling Grids for E-sciencE

- Avian flu data challenge: in the selection of 2250 compounds out of initial 308585 compounds:
 - 5 out of 6 known effective inhibitors were found.
 - enrichment factor of 111 was observed.
- Experimental assay confirms 7 active out of 123 purchased "potential hits"

 Data challenges on malaria: the 25 most promising compounds out of 500.000 are now being purchased and will be tested in vitro at Chonnam National University, South Korea

Global effectiveness:

(Hits_{sampled}/N_{sampled})/(Hits_{total}/N_{total}) Pearlman & Charifson, JMC, 2001

Pre-sceening (AUTODOCK) over collection and sample first 15% EF¹

= (5/6)/15% = 5.5

Re-ranking (SDDB) first 15% and sample first 5% EF² = (5/6)/(5%*15%) = 111

- WISDOM proposes a new approach to drug discovery thanks to the grid
 - Rapid deployment of very large scale virtual screening
 - Collaborative environment for the sharing of data in the research community
- WISDOM fully exploits EGEE services, APIs and resources.
 - AMGA allows to store securely results and statistics immediately
 - Web Service Interface using WS-I profile guarantees interoperability
- First biochemical results demonstrate grid relevance to the drug discovery community
 - Grid is a superior tool to discover new drugs

- Development of the WISDOM environment
 - ASGC: Yu-Hsuan Chen, Li-Yung Ho, Hurng-Chun Lee
 - ITB-CNR: G. Trombetti
 - CNRS-IN2P3: V. Bloch, M. Diarena, J. Salzemann
 - HealthGrid: B. Grenier, N. Spalinger, N. Verhaeghe

- Biochemical preparation and analysis
 - ASGC: Y-T Wu
 - Chonnam National University: D. Kim & al
 - CNRS-IN2P3: A. Da Costa, V. Kasam
 - ITB-CNR: L. Milanesi & al

LHC Experiments Dashboard demo

Julia Andreeva and Pablo Saiz (CERN)

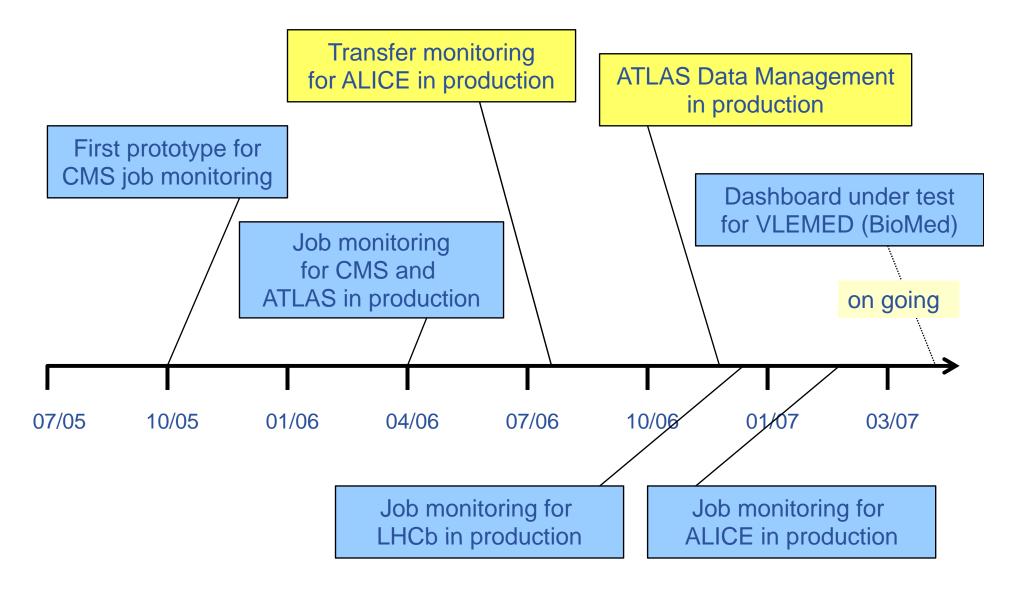
On behalf of the Dashboard development group : Catalin Cirstoiu, Benjamin Gaidioz, Juha Herrala, Gerhild Maier, Ricardo Rocha, Pablo Saiz, Julia Andreeva

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks

Introduction


Main Monitoring Applications

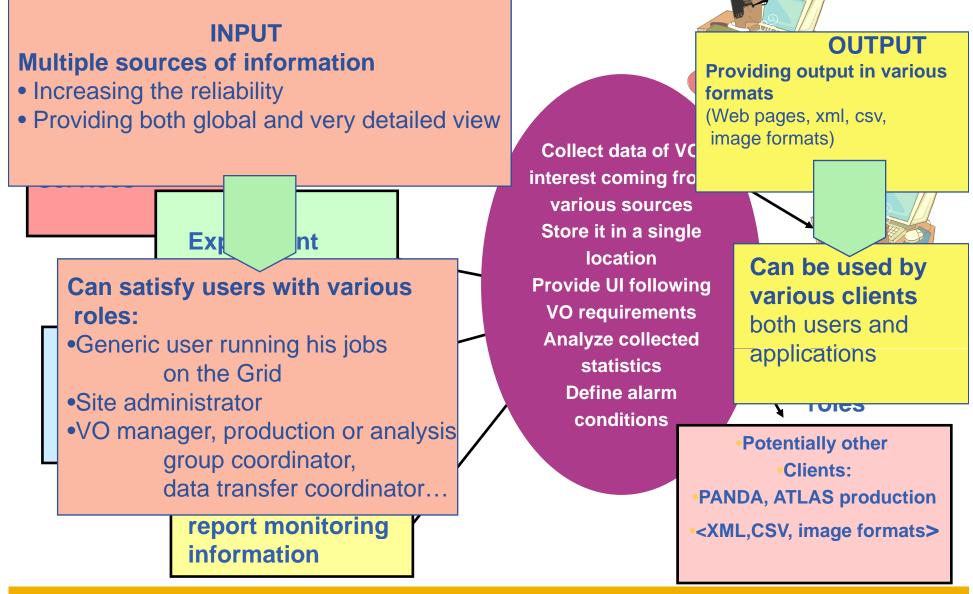
- Job monitoring
- Site reliability
- Data management monitoring
- Conclusions

Why one more monitoring tool, what does make it different from the others?

- Independent of the Grid flavor
- Covering different areas and various aspects of the VO activities
- Combining Grid job status and service status information with the specific data of the experiment/application
- Flexible enough to allow rapid integration with the new requirements
- Reliable and scaling well

Evolution of the project

- The tool is developed by ARDA (CERN; NA4 HEP) team in collaboration with MonAlisa (Caltech) developers and participation of ASGC (Taiwan), MSU and JINR (Russia) and LAL (France, JRA2)
- Recently a collaboration was set up with the EDS company within the CERN OpenLab project
- The future evolution of the project is being discussed in conjunction with other EGEE activities and in particular with SA1


Experiment Dashboard link

http://dashboard.cern.ch

EGEE-II INFSO-RI-031688

NA4/Demo - EGEE-II 1st EU Review - 15-16 May 2007 41

CGCC: eriment Dashboard concept

EGEE-II INFSO-RI-031688

Monitoring applications

Enabling Grids for E-sciencE

- Job Monitoring
- Site Reliability
- Data Management Monitoring
- Data Transfer Monitoring
- Monitoring of the distributed DBs (developed by 3D project)

Job monitoring

- What is the status of the jobs
 - belonging to an individual user/group/VO
 - submitted to a given site or Grid flavor or via a given resource broker
 - reading a certain data sample, running a certain application...
- If they are pending or running
 - for how long, where?
- If they are finished
 - Did they fail or run properly?
- If they failed why?
- How resources are shared?
- Are the available resources are efficiently?

- Job Exit Reason returned by Logging and Bookkeeping System is often not enough to understand what happened to the job
- Job can be resubmitted multiple time and all "job attempts" not necessary happen at the same site
- Dashboard analyses the reliability of the job processing and calculates success rate by splitting the job flow in "job attempts"
- Detailed failure reason analysis and error ranking
- Where possible the troubleshooting recipes are provided

- Data management is a key component of the computing models of the LHC experiments
- Very strong requirements regarding data safety, consistency of the bookkeeping and large-scale data replication
- Example of the Data Management monitoring application is the Dashboard monitoring of the ATLAS Distributed Data Management (DDM)

- User Interface
 - User Task monitoring
- Improvement of data completeness and reliability
 - Adding new information sources (GridIce, SAM, APEL, condor-g)
- Improvement of effectiveness for troubleshooting
 - Sending alarms. Need to define alarm conditions with the experiments for various use cases
 - Collecting and analyzing failure information
 - Collecting troubleshooting recipes, making them available at the dashboard UI
 - Correlating where relevant failures with the results of the SAM tests

- Experiment Dashboard is used by all 4 LHC experiments and evolving very fast to match their requirements
- Currently is evaluated by VO outside LHC community
- The tool proved to provide reliable and useful VOoriented monitoring data, with needed level of details, available in various formats.

- Grid added value
 - Ease daily workflows and support collaborative work (Climate Data Management)
 - Access a new scale of processing and data sharing (WISDOM)
 - Monitoring of applications contributing to the grid evolution (Dashboard)

Relevance

- All activities are part of leading-edge research in the corresponding fields
- Examples of cross-applications collaboration
 - Sharing experience, tools and actual software solutions
 ...enabled by EGEE!