Optimization of Rucio-SENSE DMM

•••

Camille Sicat, with mentorship by Aashay Arora and Diego Davila

Premise

Current experiments, such as CMS, generate as much as 20 PB/year

 Future planned experiments, such as the HL-LHC, will generate 30x more data

RAW event

size [MB]

0.9

6.5

Primary Data volume per year goes up by x30

AOD event

size [MB]

0.35

Total per

year [PB]

~20

~600

	RAW	AOD	MINI	NANO
Run 2	0.9 MB/event	0.35 MB/event	0.035 MB/event	0.001MB/event
	8 PB/year	16 PB/year	1 PB/year	0.031 PB/year
HL-LHC	6.5 MB/event	2.0 MB/event	0.250 MB/event	0.002 MB/event
	364 PB/year	240 PB/year	30 PB/year	0.24 PB/year

The Problem

- To replicate this volume of data to storage sites, need >=100 Gbps network speeds
 - Estimated 400 Gbps between sites in the U.S.
- Even assuming hardware works, need to optimize network usage
- Currently, just try to push data, and if it fails, push again
 - Networks are dominated by large transfers
 - 100TB 100PB -> 1PB @ 100 Gbps ~ 1 day
- Need more accountable network usage

Accountability with Software-Defined Networking (SDN)

- SDN allows for strong end-to-end accountability + ability to manage different priorities of workflows
- SDN integration with current tools would allow:
 - Report much data has been transferred/received
 - Comparison of expected vs. actual transfer rates
 - Identify points of failure

Rucio-SENSE DMM

- SENSE (**S**oftware-Defined Network for **E**nd-to-end **N**etworked **S**cience at the **E**xascale) allows for customizable multi-domain orchestration
 - For use on experiments with individual domain science workflows + requirements
 - Pushes QoS and routing rules
- Rucio CERN's data management software
 - Provides scalable data storage, transfer, replication, etc. across different physical locations
 - Allows for individualized tagging/tracking of data

Current DMM Performance

- The Data Movement Manager (DMM) is the interface between SENSE and Rucio
 - From Rucio: source/destination RSE names, number of bytes, priority
 - From SENSE: Constructs P2P VLANs for each set of endpoints
 - Monitors status + performance of all dataflows
- Based on transfer metadata, DMM provisions network bandwidth for each rule
 - Constantly assesses current bandwidth usage and re-allocates depending on rule priority

Project Goals

- Make DMM more robust.
 - Implementation of DMM's monitoring system
 - Correlate FTS monit data with host level information
 - Generate performance reports from combined host/transfer data (transfer rates, point of failures, etc.)
 - Optimization of DMM's interactions with Rucio
 - o Optimization of DMM's bandwidth allocation algorithm

Summary

- Future experiments will generate large amounts of data
- Need to integrate SDN with existing tools to make networks more accountable for data transfers with large amounts of data
- Goal is to make Rucio-SENSE DMM more robust to meet this need

Thank you!

Backup

Detailed Model

Transfer Performance

