Optimizing automatic differentiation using activity analysis

Andriichuk Maksym, 10.07.2024

Short introduction to Clad

Clad is a Clang plugin designed to provide automatic differentiation (AD) for C++ mathematical functions.
It generates code for computing derivatives modifying abstract syntax tree using LLVM compiler features. AD breaks down the function into elementary operations and applies chain rule to compute derivatives of intermediate variables. Clad supports forward- and reverse-mode differentiation that are effectively used to integrate all kinds of functions

```
double square(double x){
    double result = x*x;
    return result;
}
```


So what is activity analysis(AA)?

First a bit of motivation...

Sometimes Clad produces adjoints that are useless for the desired final derivative. Let's call those variables passive. Otherwise, the variable is called active. Now Clad assumes all variables are active, but we can do much better using AA.

Lets see the example:

code	forward mode	fm+aa
$\begin{gathered} f(a, b, c): \\ x=a^{*} b \\ d=a^{*} c \\ \text { return } x \end{gathered}$	$\begin{aligned} & \text { f_darg0(a, b, c): } \\ & d_{-} a=1 \\ & d _b=0 \\ & d _c=0 \\ & d _x=d_{-} a * b+a{ }^{*} d _b \\ & x=a^{*} b \\ & d _d=d_{-} a * c+a{ }^{*} d _c \\ & d=a^{*} c \\ & \text { return d_x } \end{aligned}$	$\begin{aligned} & \text { f_darg0(a, b, c): } \\ & d_{\text {_ }}=1 \\ & d _b=0 \\ & d _x=d_{-} a * b+a^{*} d _b \\ & x=a^{*} b \\ & d=a^{*} c \\ & \text { return d_x } \end{aligned}$

$A A$ is the combination of a forward and a backward analysis.
It propagates forward the Varied set of the variables that depend in a differentiable way on some independent input. Similarly, it propagates backwards the Useful set of the variables that influence some dependent output in a differentiable way.

Since the relation "depends in a differentiable way of" is transitive on code sequences, the essential equations of the propagation are:

$$
\begin{aligned}
& \operatorname{Varied}^{+}(I)=\operatorname{Varied}^{-}(I) \times \operatorname{Diff}-\operatorname{depp}(I) \\
& \operatorname{Useful}^{-}(I)=\operatorname{Diff}-\operatorname{dep}(I) \times \operatorname{Useful}^{+}(I)
\end{aligned}
$$

Where Varied ${ }^{-}(I)$, Varied $^{+}(I)$ are sets of Varied variables before and after $I-t h$ instruction, $\left(v_{1}, v_{2}\right) \in \operatorname{Diff}-\operatorname{dep}(I)$ iff v_{2} depends on v_{1} after $I-t h$ instruction,

$$
v_{2} \in S \times \operatorname{Diff}-\operatorname{dep}(I) \Longleftrightarrow \exists v_{1} \in S,\left(v_{1}, v_{2}\right) \in \operatorname{Diff}-\operatorname{dep}(I)
$$

And finally we define the set of all active variables as follows:

$$
\operatorname{Active}^{+}(I)=\text { Varied }^{+}(I) \cap \operatorname{Useful}^{+}(I)
$$

BA [Jacobian] - Release

Note:

After AA is implemented and both AA and TBR analysis are default, there is a potential in modifying TBR using AA

References

[1] L.Hascoët, V.Pascual. The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification. ACM Transactions on Mathematical Software 39(3):20:1-20:43.

