
Andriichuk Maksym, 10.07.2024

Optimizing automatic
differentiation using activity
analysis

Short introduction to Clad
Clad is a Clang plugin designed to provide automatic differentiation (AD) for C++ mathematical functions.

It generates code for computing derivatives modifying abstract syntax tree using LLVM compiler features. AD
breaks down the function into elementary operations and applies chain rule to compute derivatives of
intermediate variables. Clad supports forward- and reverse-mode differentiation that are effectively used to
integrate all kinds of functions

So what is activity analysis(AA)?
First a bit of motivation…

Sometimes Clad produces adjoints that are useless for the desired final derivative. Let’s call those
variables passive. Otherwise, the variable is called active. Now Clad assumes all variables are active,
but we can do much better using AA.

Lets see the example:

code forward mode fm+aa

f(a, b, c):

 x = a*b

 d = a*c

 return x

f_darg0(a, b, c):

 d_a=1

 d_b=0

 d_c=0

 d_x = d_a * b + a * d_b

 x = a*b

 d_d = d_a * c + a * d_c

 d = a*c

 return d_x

f_darg0(a, b, c):

 d_a=1

 d_b=0

 d_x = d_a * b + a * d_b

 x = a*b

 d = a*c

 return d_x

AA is the combination of a forward and a backward analysis.

It propagates forward the Varied set of the variables that depend in a differentiable way on some
independent input. Similarly, it propagates backwards the Useful set of the variables that influence
some dependent output in a differentiable way.

Since the relation “depends in a differentiable way of” is transitive on code sequences, the essential
equations of the propagation are:

Varied+(I) = Varied−(I) × Diff − depp(I)

Useful−(I) = Diff − dep(I) × Useful+(I)

Where are sets of Varied variables before and after instruction,

 iff depends on after instruction,

Varied−(I), Varied+(I) I − th

(v1, v2) ∈ Diff − dep(I) v2 v1 I − th

v2 ∈ S × Diff − dep(I) ⟺ ∃v1 ∈ S, (v1, v2) ∈ Diff − dep(I)

And finally we define the set of all active variables as follows:

Active+(I) = Varied+(I) ∩ Useful+(I)

Note:

After AA is implemented and both AA and TBR analysis are default, there is a potential in modifying TBR using AA.

References

[1] L.Hascoët, V.Pascual. The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification. ACM Transactions on
Mathematical Software 39(3):20:1-20:43.

