# Towards Differentiable Jet Clustering

Nishank Gite (UC Berkeley) Annalena Kofler (MPI-IS) Nicole Hartman (TUM) Michael Kagan (SLAC) Lukas Heinrich (TUM)

7/10/2024

## Today's Agenda

- What is Jet Clustering?
- What is the Problem with Jet Clustering?
- Optimization
- Looking Beyond the scope

### Introduction What is Jet Clustering?

- decays)
- We only detect stable particles
- etc.
- Outcome: A Jet!!  $\bullet$
- Jet can tell you the invariant mass of the original particle •

### Jets: Collimated sprays of particles created via hadronization (cascade of

Iterative Jet Clustering using parameters: distance, momenta, angular ordering,



Particles Decay, and they are detected in our trackers, and harder we cluster, we typically cluster around harder particles





merge or not merge jets into one bigger jet

![](_page_5_Picture_1.jpeg)

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_3.jpeg)

### **Motivations** What is the Problem with Jet Clustering?

- Jet Clustering has free parameters
  - Radius is optimized once (R = 0.7) then kept constant
  - Is the radius always going to be a constant for all jets? Highly unlikely
- Clustering is probabilistically a binary decision
  - Given multiple sub-jets, the decision to merge these is either: merge, or don't merge which can be modeled as 1 or 0 which is non-differentiable

![](_page_7_Figure_6.jpeg)

![](_page_7_Picture_7.jpeg)

### Nethods Optimization

- Solution: Make the Step Function continuous → Sigmoid
  - This gives you a smooth probability distribution that is also differentiable
- Use this for Jet Radii calculations, specifically if we look at the di-jet invariant mass reconstruction
  - Resonance width varies with radius
  - Can find this optimal width with derivatives

![](_page_8_Figure_6.jpeg)

![](_page_8_Figure_10.jpeg)

### Applications Looking beyond the Scope

- One of the core issues with using ML for jet clustering is that jet merge decision themselves are non-differentiable
  - the context of NNs
  - originated from so like b-jets, c-jets etc.)

If Jets were differentiable we would be able to do back propagation within

 Use NNs to optimize Jet/sub-Jet Clustering and lump sum Jet Tagging as well (Jet Clustering creates jets without extracting information, Jet Tagging takes jet information and tells you what particle these decay products all