PICOSEC Micromegas precise-timing gaseous detectors and studies on robust photocathodes

Marta Lisowska^{1,2,*} on behalf of the CERN EP-DT-DD Gas Detectors Development team and the PICOSEC Micromegas Collaboration

¹European Organization for Nuclear Research (CERN), Switzerland, ²Université Paris-Saclay, France

*Corresponding author. Email address: marta.lisowska@cern.ch

GDD Gas Detectors Development Group

CERN

EP R&D

P I C O S E C Micromegas

1. Introduction

The challenges of future High Energy Physics experiments have aroused intense interest in advancing detector technologies with good time resolution. First PICOSEC Micromegas (MM) single-pad prototypes have demonstrated a time resolution below $\sigma = 25$ ps [1], prompting ongoing developments [2,3] to adapt the concept for physics applications. The objective is to build robust multi-channel detector modules suitable for large-area detection systems requiring excellent timing precision.

GND

+HV

2. Detection concept

• PICOSEC Micromegas: a gaseous detector aiming at achieving

3. Developments towards applicable detector

• Objective: robust multi-

a time resolution of tens of picoseconds for MIPs

- **Typical PICOSEC waveform:** fast electron peak + slow ion tail
- Rising edge of the electron peak determines a signal arrival time (SAT)

4. Resistive Micromegas

Resistive Micromegas Photocathode Advantages: + protecting detector from Mesh highly ionizing events Resistive layer: DLC + stable operation under in-Insulating layer tense particle beams Read-out pad + better position reconstruction by signal sharing

- channel detector modules for large-area coverage
- Developments: \rightarrow design optimisation \rightarrow stability and robustness \rightarrow scalable electronics

100-channel module

- Intensive R&D activities: from simulations and design, through production and assembly, to measurements and analysis
- Beam campaign: CERN SPS H4 beam line, 150 GeV/c muon beam
- Experimental setup: tracking/triggering/timing telescope
- **Time resolution:** standard deviation of the SAT distribution

5. Robust photocathodes

• First prototype: Cesium Iodide + high QE (~12 p.e./ μ) in com-

parison to other materials - vulnerable to damage from

- Single-pad resistive MM of 20 $M\Omega/\Box$ equipped with a CsI photocathode obtained equivalent precision to a nonresistive prototype, exhibiting an excellent time resolution of $\sigma \approx 12$ ps
- First measurements of a single-pad resistive detector assembled with a **pream**plifier integrated on the outer PCB showed comparable timing properties

- 100-channel detector with a 10×10 cm² resistive MM 20 M Ω/\Box yielded a time resolution of $\sigma \approx 20 \ ps$ for an individual pad [3]
- Next step: production of a high-rate 10×10 cm² MM with doublelayer DLC for charge evacuation and evaluation of rate capability

- ion backflow, discharges and (%) humidity
- Alternative photocathodes: B₄C, DLC, carbon-based nanostructures
- Measurements conducted with $\mathbf{B}_4\mathbf{C}$ photocathodes, ranging in thickness from 9 nm to 15 nm, exhibited the best time resolution of $\sigma \approx 35 \ ps$ for the thinnest layer [3]
- First depositions of DLC photocathodes with layer thicknesses ranging from 1.5 nm to 4.5 nm carried out at the **CERN MPT** workshop
- The best results for a singlepad detector achieved with a 1.5 nm DLC photocathode, yielding a time resolution of $\sigma \approx 31 \, \mathrm{ps}$

6. Conclusions

- First measurement **combining** a single-pad resistive MM, a DLC photocathode and an integrated preamplifier showcased great performance and outstanding timing properties
- Efforts dedicated to detector developments enhance the feasibility of the PICOSEC concept for experiments requiring sustained performance while maintaining excellent timing precision

• Next step: evaluation of a 10×10 cm² robust photocathode, incorporating a conductive interlayer to prevent a voltage drop, to be tested with a 100-channel prototype and a SAMPIC digitiser

References

[1] J. Bortfeldt et al. 2018 NIM A, **25** 317-325 [2] M. Lisowska et al. 2023 NIM A, **1046** 167687 [3] M. Lisowska et al. 2023 JINST, **18** C07018

