Cryocooler-based cryogenic systems are an attractive alternative for LTS detector magnets. Such a solution requires a design oriented towards a significant reduction of heat input to the cold mass. Current leads are one of the main heat sources for the cold mass. Hence, efforts are being made to design conduction-cooled HTS current leads together with an associated cryogenic circuit which intercepts heat at an intermediate temperature of 50 K.

Goal

- Design and optimisation of HTS-based current leads featuring an operating current of 3 kA
- Design of a remote cooling loop for the CLs operating with helium gas @50 K
- Design the heat exchangers constituting thermal interfaces between helium and the leads
- Interconnection, assembly and test of the demonstrator

Thermal interface between cryocooler and helium gas

Main components of the loop:
- Single-stage Gifford-McMahon cryocooler AL600
- Double-stage PT420
- Active thermal shields @50K
- Cryocooler-to-helium gas heat exchanger
- 2 x 3 kA current leads with integrated heat exchangers
- Cold circulator
- Measuring apparatus

Characteristics of the cooling circuit

- Working fluid: helium gas
- Operating pressure: 5 bara
- Operating temperature: 50 K
- Cooling capacity @50K: 340 W

Design and optimisation of the current leads

- Material: Brass
- Current: 3 kA
- Dissipation: 15.1 W
- Outer diameter: 51/65 mm
- Mass flow: 2 g/s

Heat transfer characteristics:
- Steady state is considered
- Mass flow of 2 g/s
- Operating static pressure of 5 bara
- Flow velocity of 1.22 m/s
- Laminar flow, Re=1030
- Linear pressure drop of 4.7 mbar
- Inlet temperature of 60 K
- Outlet temperature of 43 K

Conclusion & Acknowledgement

- Design of the HTS current lead cooling system was done
- Thermal interface between cryocooler and helium gas was designed and manufactured, to be tested soon
- Optimized design of the 2 x 3 kA HTS current lead prepared
- Preparations for the test campaign are underway

We thank Thibaut Colffet, Philippe Frichot, Marco Garlasche, Torsten Koettig, Allan Saillet, Patricia Tavares Coutinho Borges De Sousa, Anton Titenkov, and Igor Titenkov for the support and useful discussions.

References

[2] COMSOL Multiphysics®