PICOSEC Micromegas precise-timing gaseous detectors and studies on robust photocathodes

MARTA LISOWSKA

ON BEHALF OF THE CERN EP-DT-DD GDD GROUP AND OF THE PICOSEC MICROMEGAS COLLABORATION

DETECTOR SEMINAR - SPECIAL SESSION (EP-RD, AIDAINNOVA POSTER AWARDS), 12 JULY 2024

Detector concept

• **PICOSEC Micromegas:** a gaseous detector aiming at achieving a time resolution of tens of picoseconds for MIPs

• First single-pad prototypes with a time resolution below $\sigma = 25 \text{ ps} \rightarrow \text{Now we want to adapt the concept for applications}$

Developments towards applicable detector

- Objective: Robust tileable multi-channel detector modules for large-area coverage
- Detector optimisation:

gaps thickness, fields settings, operating gas

• Stability and robustness:

resistive Micromegas, robust photocathodes

Large area coverage:

100-channel prototypes, tileable modules

• Scalable electronics:

scalable amplifiers, multi-channel digitisers

Detector characterisation with particle beams

- Intensive R&D activities: From simulations and design, through production and assembly to measurements and analysis
- **Objective of the test beam campaigns:** to measure the time resolution of the detectors assembled in various configurations
- Beam type: CERN SPS H4 beam line, 150 GeV/c muons (also pions and electrons)
- Experimental setup: tracking/timing/triggering telescope
 → Three triple-GEM detectors for precise particle tracking
 → MCP-PMT for timing reference and DAQ trigger
 → PICOSEC Micromegas (MM) detectors under test
 - \rightarrow MCP-PMT and PICOSEC signals read out by oscilloscopes

Single-pad prototype performance

Optimisation studies on a single-pad prototype to

ightarrow enhance HV stability

- \rightarrow reduce noise
- ightarrow achieve a uniform timing response
- ightarrow all while using a simplified assembly procedure

• Single-pad detector with 10 mm dia. active area equipped with a CsI photocathode + custom developed RF amplifiers showed an **improved time resolution of \sigma = 12.5 \pm 0.8 ps**

A. Utrobičić et al., arXiv:2406.05657

Advantages and requirements

- Advantages of resistive Micromegas:
 - + protection against violent discharges
 - + ensuring stable operation under intense particle beams
 - + possibly better position reconstruction by charge spreading
- **Objective:** profit from the advantages of the resistive Micromegas while maintaining a good time resolution

Requirements for the surface resistivity selection:

low enough to:

- \rightarrow minimise voltage drop during
 - high-rate beam conditions

high enough to:

- \rightarrow guarantee stable operation
- ightarrow prevent any negative impact on the signal's leading edge

Rate capability and dependence on the rising edge of the signal

• Simulated gain drop for different resistivities

• Simulated shape of the induced signal

• To ensure robustness, the nominal surface resistivity of 20 M Ω / \Box was selected for future PICOSEC prototypes

D. Janssens, PhD dissertation

Single-pad prototype performance

- The single-pad detectors were manufactured following the procedure used for metallic prototypes with an additional step involving a thin DLC layer of 20 MΩ/□ surface resistivity
- Two different active areas: 10 mm and 15 mm dia.
- Detector of with 10 mm dia. active area equipped with a CsI photocathode obtained equivalent precision to a non-resistive prototype,

exhibiting an excellent time resolution of $\sigma = 12.5 \pm 1.4$ ps

• Detector with 15 mm dia. active area - time resolution of σ = 13.7 ± 2.2 ps

100-channel prototype performance

- 100-channel detector with 10×10 cm² resistive MM **20 MΩ/** \square yielded a **time resolution of below \sigma = 20 ps** for an individual pads
- SAMPIC readout: narrow time resolution distribution RMS \approx 23.7 ps + tool to study the response of multi-channel detector
- <u>Next step</u>: production of a high-rate 10×10 cm² MM with double-layer DLC for charge evacuation and evaluation of rate capability

Scalable electronics

Integrated preamplifiers and FastIC readout and

- **Integrated amplifiers:**
 - \rightarrow electronics directly integrated on outer PCB to optimize signal routing and compactness
 - \rightarrow single-pad prototype achieved comparable time resolution \rightarrow next step: amplifiers integrated on the 100-channel detector

FastIC ASIC readout:

- ightarrow fixed threshold timing and timewalk correction with energy information from energy pulses provided by FastIC \rightarrow achieved time resolution of σ = 50 ps for an individual pad
- \rightarrow multi-channel readout ongoing
- Evaluation of alternative TDCs and ASICs

Single-pad rMM + CsI + integrated amp $\sigma = (14.1 \pm 0.8) \text{ ps}$ PICOSEC ve referen Timing Energy pulse pulse 200 300 400 L. Scharenberg, link Time / ns

Robust photocathodes

CsI photocathode and the alternatives

- First single-pad prototype: CsI photocathode
 + high QE compared to other materials
 - can be damaged by ion back flow, discharges
 - sensitive to humidity (assembly)
- Need to search for alternative materials:
 - \rightarrow Diamond-Like Carbon (DLC)
 - \rightarrow Boron Carbide (B₄C)
 - \rightarrow Nanodiamonds

.

- \rightarrow Carbon nano-structures
- **ASSET** Photocathode characterisation setup M. Lisowska, <u>MSc thesis</u>

QE AND AGEING STUDIES PERFORMED USING UV LIGHT

Robust photocathodes

Diamond-Like Carbon

- First depositions of DLC photocathodes with layer
 thicknesses ranging from 1.5 nm to 4.5 nm carried
 out at the CERN MPT workshop using a magnetron
 sputtering technique
- Transparency and surface resistivity measurements
- The best results achieved with a 1.5 nm DLC, yielding a time resolution of σ ≈ 32 ps
- **B₄C photocathodes**: time resolution $\sigma \approx 34.5$ ps
- <u>Next step</u>: evaluation of a 10×10 cm² robust photocathode, incorporating a conductive interlayer

Pulsed DC magnetron vacuur deposition machine

ransparency (%)

Towards applicable detector

Stable and robust prototype

- First measurement combining a single-pad 15 mm dia. resistive Micromegas,
 a DLC photocathode and an integrated preamplifier showcased great
 performance and excellent timing properties
- The detector achieved a time resolution of σ ≈ 31.4 ps within a 9 mm dia.
 circle centered around the pad, capturing exclusively fully contained events
- The device displayed a uniform time response across this region, with an RMS ≈ 38.8 ps

Summary

Intensive R&D activities to characterise the timing response of the PICOSEC MM prototypes

- Detector optimisation \rightarrow Improvement of the single-pad detector's time resolution to $\sigma \approx 12.5$ ps by introducing a new design
- Resistive Micromegas \rightarrow Single-pad detector with 20 M Ω / \Box surface resistivity obtained equivalent precision to a non-resistive prototype, exhibiting an excellent time resolution of $\sigma \approx 12.5$ ps
 - **Robust photocathodes** \rightarrow Single-pad prototype with a time resolution $\sigma \approx 32$ ps for DLC photocathodes and $\sigma \approx 34,5$ ps for B₄C photocathodes
- **Large area coverage** \rightarrow 100-channel PICOSEC MM detectors with a **time resolution** $\sigma < 18 \text{ ps for a metallic prototype}$ and $\sigma < 20 \text{ ps for a resistive}$ for individual pads
- Evaluation of waveform TDC and timing ASICs \rightarrow Readout of multi-channel detectors

Precise timing with PICOSEC Micromegas

Other ongoing activities within the PICOSEC Collaboration

- **Stability:** fine mesh Micromegas
- **Rate-capability:** double-layer DLC MM for vertical charge evacuation
- Improving the spatial resolution: charge spreading with resistive PICOSEC MM
- **Robust photocathodes:** studies on B₄C, DLC, Nanodiamonds
- Alternative electronics: integrated preamplifiers; FastIC ASICs; SAMPIC TDC
- **Operating gas**: exploring alternative gas mixtures
- Material budget: alternative ways to preserve detector's planarity; sealed detectors
- Scaling up to larger area: tiling 10x10 cm² modules, development of larger prototypes

Conclusions

- Efforts dedicated to detector developments enhance the feasibility of the PICOSEC concept for experiments requiring precise timing
- Detectors with sub-ns time resolution: Tileable multi-channel detector modules for large area coverage fulfilling the requirement of the robustness with "relaxed" timing properties

PICOSEC Micromegas Collaboration

M. Lisowska^{1,2,*}, Y. Angelis³, J. Bortfeldt⁴, F. Brunbauer¹, E. Chatzianagnostou³, K. Dehmelt⁵, G. Fanourakis⁶, K. J. Floethner^{1,7}, M. Gallinaro⁸, F. Garcia⁹, P. Garg⁵, I. Giomataris¹⁰, K. Gnanvo¹¹, T. Gustavsson¹², F.J. Iguaz¹⁰, D. Janssens^{1,13,14}, A. Kallitsopoulou¹⁰, M. Kovacic¹⁵, P. Legou¹⁰, J. Liu¹⁶, M. Lupberger^{7,17}, S. Malace¹¹, I. Maniatis^{1,3}, Y. Meng¹⁶, H. Muller^{1,17}, E. Oliveri¹, G. Orlandini^{1,18}, T. Papaevangelou¹⁰, M. Pomorski¹⁹, L. Ropelewski¹, D. Sampsonidis^{3,20}, L. Scharenberg^{1,17}, T. Schneider¹, L. Sohl¹⁰, M. van Stenis¹, Y. Tsipolitis²¹, S.E. Tzamarias^{3,20}, A. Utrobicic²², R. Veenhof^{1,23}, X. Wang¹⁶, S. White^{1,24}, Z. Zhang¹⁶, and Y. Zhou¹⁶

¹European Organization for Nuclear Research (CERN), CH-1211, Geneve 23, Switzerland ²Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ³Department of Physics, Aristotle University of Thessaloniki, University Campus, GR-54124, Thessaloniki, Greece ⁴Department for Medical Physics, Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany ⁵Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY 11794-3800, USA ⁶Institute of Nuclear and Particle Physics, NCSR Demokritos, GR-15341 Agia Paraskevi, Attiki, Greece ⁷Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Nußallee 14–16, 53115 Bonn, Germany ⁸Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal ⁹Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland ¹⁰IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ¹¹Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA ¹²LIDYL, CEA, CNRS, Universit Paris-Saclay, F-91191 Gif-sur-Yvette, France ¹³Inter-University Institute for High Energies (IIHE), Belgium ¹⁴Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ¹⁵Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia ¹⁶State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China ¹⁷Physikalisches Institut, University of Bonn, Nußallee 12, 53115 Bonn, Germany ¹⁸Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054 Erlangen, Germany ¹⁹CEA-LIST, Diamond Sensors Laboratory, CEA Saclay, F-91191 Gif-sur-Yvette, France ²⁰Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece ²¹National Technical University of Athens, Athens, Greece ²²Institute Ruder Bosković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia ²³Bursa Uludağ University, Görükle Kampusu, 16059 Niufer/Bursa, Turkey ²⁴University of Virginia, USA

MARTA LISOWSKA | DETECTOR SEMINAR | 12 JULY 2023

Thank you for your attention!

CONTACT: MARTA.LISOWSKA@CERN.CH

Back up slides

MARTA LISOWSKA | DETECTOR SEMINAR | 12 JULY 2023

Convencional vs PICOSEC Micromegas

Signal arrival time jitter

Signal analysis

- Quantifying the PICOSEC detector's time resolution requires a reference device with a superior timing precision
- Leading edge of the signal fitted using a sigmoid function timestamps determined at 20% of the signal amplitude (CFD method)
- SAT: difference between the timestamps of PICOSEC and the MCP-PMT
- <u>Time resolution:</u> standard deviation of the SAT distribution

Other resistive detectors under test

- 7-pad resistive prototypes with hexagonal pads of 1 cm dia.
 - \rightarrow different resistivity values: 200 k Ω/\Box , 10 M Ω/\Box
 - \rightarrow different layer architectures: resistive vs capacitive sharing
 - \rightarrow evaluation of time resolution, rate capability, signal sharing,
 - special resolution, amplitude and timing uniformity

Details: A. Kallitsopoulou, CEA Saclay, RD51 CM June 2023: link

Exploring different resistivity values, detector geometries layer architectures

- Single-pad µRWELL prototypes
 - \rightarrow multiple detector geometries with different capacitances and varying pitch
 - ightarrow high gain and stable operation achieved
 - ightarrow slower rising time of e-peak observed compared to MM

Details: K. Gnanvo, JLab, IEEE meeting: link

Photocathode characterisation

QE measurements - Reflective mode

Photocathode characterisation

QE measurements - Transmission mode

Photocathode characterisation

Ageing studies – Irradiation mode

3. Irradiated sample (grounded): Attraction of ions from avalanche Accumulation of charge

2. Multiplication wires (positive HV): Attraction of primary electrons Avalanche multiplication Production of electrons and ions

1. X-ray beam in a gas chamber: lonization of particles Creation of primary charge

MARTA LISOWSKA | DETECTOR SEMINAR | 12 JULY 2023

Robust photocathodes

RD51 and DRD1 test beam campaign measurements

- Measurements:
 - 1. Transparency measurement with ASSET
 - 2. Single PhotoElectron measurement with LED
 - 3. Beam measurement @ CERN SPS H4 beam line, 150 GeV/c muons
 - 4. Timing measurement @ CERN SPS H4 beam line, 150 GeV/c muons

Number of PhotoElectron analysis procedure*: ٠

- 1. Find maximum amplitude for each waveform
- 2. Plot a histogram of all maximum amplitudes
- 3. Fit with Gauss for noise and Polya for signal and calculate the mean value of Polya
- 4. Divide MIP mean amplitude by SPE mean amplitude to obtain NPE for each photocathode

PICOSEC LED test - Run 482 - Max e-peak amplitude

Improvement of

the measurement

and analysis procedures

*PE analysis thanks to help of S. Tzamarias, F. Brunbauer, D. Janssens, M. Robert and C. Volpato (CERN Summer Students 2022 and 2023, reports: link and link)

Robust photocathodes

Time resolution

- **Prototype**: Single pad non-resistive MM, pre-amplification gap 126/145 μm* ٠
- **Photocathodes**: CsI, DLC, B₄C of different thicknesses from different collaborators** ٠
- **Time resolution** after MCP subtracted: ٠

 $\sigma_{\rm PICO} = \sqrt{\sigma_{\rm combined}^2 - \sigma_{\rm MCP}^2},$ where MCP double split $\sigma_{MCP} \approx 7.67$ ps

Photocathodes measured in combination with ٠ a new detector with optimized design were able to reach higher drift fields resulting in better time resolution (results at 39.2 kV/cm taken for the further analysis)

*Samples measured in a new detector with 126 µm gap SEALED in August, except for 3 measured with Saclay detector with 145 µm gap FLUSHING in July (marked with a star) **Depositions: CsI at CERN, DLC at USTC, B₄C at CEA Saclay and ESS

New promising results

of robust photocathodes

from 2023 test beams

Alternative gas mixture studies

- Studies on alternative gas mixtures
- **PICOSEC standard gas mixture:** Ne:CF₄:C₂H₆ (80:10:10) \rightarrow high gain, quenching, drift velocity, but expensive, **not eco-friendly**, flammable
- Alternative gas mixture: Ne:iC₄H₁₀ \rightarrow CF₄ dropped, iC₄H₁₀ as a replacement of C₂H₆ \rightarrow low GWP (0.2 instead of 740), good quenching

Integration

Sealed detectors

- Advantages of sealed detectors:
 - + clean, hermetically closed devices with high gas quality
 - + high ratio of active area to the size of the device
- Current status:
 - → one 10 x 10 cm² titanium housing ready to assembly → large area robust photocathode (DLC, B₄C) required → gas connectors (pinch-off tubes) ready to assembly → when all components ready – electron beam welding → last step – filling the detector with gas mixture

