

Рождение заряженных адронов в столкновениях p+Al, ³He+Au, Cu+Au при энергии $\sqrt{s_{NN}}$ = 200 ГэВ и U+U при $\sqrt{s_{NN}}$ = 193 ГэВ

Работу выполнила: **Д.М.Ларионова** Научный руководитель: проф., д.ф.-м.н. **Я.А.Бердников** Санкт-Петербургский политехнический университет Петра Великого «СПбПУ»

Санкт-Петербург, 2024

Актуальность

Кварк-глюонная плазма (КГП)

Кварк-глюонная плазма (КГП)

КГП в столкновениях релятивистских ионов

- *p+p* Референсная система столкновений
- Легкие системы столкновений (p+Al, d+Au, ³He+Au) Эффекты холодной ядерной материи
 - Эффект Кронина
 - Ядерная модификация партонных функций распределения
 - Эффекты изоспина
 - и другие...
- Тяжелые системы столкновений (Cu+Au, Au+Au, U+U) Эффекты холодной ядерной материи Эффекты КГП
 - Увеличенный выход странности
 - Анизотропные потоки
 - Гашение струй
 - Увеличенный выход барионов
 - и другие...

КГП в столкновениях релятивистских ионов

- р+р Референсная система столкновений
- Легкие системы столкновений (p+Al, d+Au, ³He+Au) Эффекты холодной ядерной материи Эффекты КГП?

PHENIX Collaboration

• Тяжелые системы столкновений (Cu+Au, Au+Au, U+U) Эффекты холодной ядерной материи Эффекты КГП

Минимальные условия формирования КГП?

Образование идентифицируемых заряженных адронов (π^{\pm} , K^{\pm} , p, \bar{p})

$$\frac{1}{2\pi m_T}\frac{d^2N}{dm_T dy} = \frac{1}{2\pi T(T+m_0)} \cdot A \cdot exp\left(-\frac{m_T-m_0}{T}\right)$$

T₀ – температура кинетического «вымораживания» ⟨u_t⟩ – средняя скорость радиального потока частиц

Увеличенный выход барионов

Л

- Увеличение значений р/т при р_T > 1.5 ГэВ/с
 Значения р/т достигают значения 0.8 (в ~2.5 раза больше, чем в р + р)
- *p*/*π* зависимость от центральности
- К/π слабо зависят от центральности

Геометрия столкновений

- Центральность мера перекрытия ядер.
- (N_{part}) количество нуклонов участников, рассчитывается с помощью модели Глаубера

0 % - наиболее центральные соударения, максимальная степень перекрытия ядер

100% - наиболее перефирические соударения, минимальная степень перекрытия ядер

Рекомбинация – процесс образования адронов, в результате объединения кварков, находящихся в фазовом пространстве в области, ограниченной радиусом рекомбинации.

- Экспоненциальное убывание инвариантных рт спектров;
- \cdot $p_T \lesssim$ 3 ГэВ/с
- КГП

Фрагментация – $p_T \gtrsim$ 3 ГэВ/с, p + p столкновения

Исследование процессов рождения заряженных адронов позволяет изучать свойства КГП

Систематическое изучение процессов рождения заряженных адронов в легких и тяжелых системах столкновений позволяют изучать минимальные условия образования КГП

Измеряемые величины

• Инвариантные p_T спектры

$$\frac{1}{2\pi p_{T}}\frac{d^{2}N}{dp_{T}dy} = \frac{N_{h}}{2\pi p_{T}N_{evt}\varepsilon_{rec}\Delta p_{T}\Delta y}$$

• Факторы ядерной модификации

$$R_{AB}(p_T) = \frac{1}{N_{coll}} \frac{d^2 N_{AB}(p_T)/dy dp_T}{d^2 N_{pp}(p_T)/dy dp_T}$$

• Величины отношений адронов

π⁻/π⁺, K⁻/K⁺, p̄/p, K⁺/π⁺, K⁻/π⁻, p/π⁺, p̄/π⁻ Вычисляются как отношения инвариантных p_T спектров соответствующих частиц Результаты

Инвариантные *р*_т спектры

Температура «вымораживания» T₀ и средние скорости коллективного потока $\langle u_t \rangle$ как функции от количества нуклонов-участников $\langle N_{part} \rangle$

- $T_0 \approx 166.1 \pm 2.2 \text{ MeV}$
- $\langle u_t \rangle (\langle N_{part} \rangle) \approx p_1 \cdot log(p_2 \cdot \langle N_{part} \rangle)$ где $p_1 = 0.0345 \pm 0.0003, p_2 = 3196 \pm 342.$

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в Си+Au и U+U столкновениях

АМРТ – модель рекомбинации

РҮТНІА – модель фрагментации

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в p+Al и $^3{\rm He}{\rm +Au}$ столкновениях

- КГП не образуется
- Объем КГП недостаточен для наблюдаемого увеличения выхода барионов.

Сравнение измеренных значений p/π с расчетами моделей РҮТНІА и АМРТ в p+Al и $^3{\rm He}{+}{\rm Au}$ столкновениях

- КГП не образуется? РНЕNIX 2022г. ψ (2S) в *p*+Al, *p*+Au
- Объем КГП недостаточен для наблюдаемого увеличения выхода барионов

Интегральные значения p/π

Можно интерпретировать как усиление роли процессов рекомбинации с увеличением количества нуклонов-участников (*N_{part}*).

Сравнение R_{AB} заряженных адронов в Cu+Au, Au+Au и U+U при схожих значениях $\langle N_{part} \rangle$

Сравнение R_{AB} заряженных адронов в Cu+Au, Au+Au и U+U при схожих значениях $\langle N_{part} \rangle$

Значения *R_{AB}* определяются областью перекрытия сталкивающихся ядер и количеством нуклонов-участников и не зависят от геометрии столкновения.

Сравнение R_{AB} заряженных адронов в p+Al, d+Au и ³He+Au при схожих значениях $\langle N_{part} \rangle$

p+Al, π^{\pm} , K^{\pm} – наклон $R_{AB}(p_T)$ p+Al, протоны – $R_{AB} \approx 1$

Сравнение R_{AB} заряженных адронов в p+Al, d+Au и ³He+Au при схожих значениях $\langle N_{part} \rangle$

p+Al, π^{\pm} , K^{\pm} – наклон $R_{AB}(p_T)$ p+Al, протоны – $R_{AB} \approx 1$

Факторы ядерной модификации *R_{AB}* легких адронов в Cu+Au и U+U столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в Cu+Au и U+U столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в *p*+Al и ³He+Au столкновениях

Факторы ядерной модификации *R_{AB}* легких адронов в *p*+Al и ³He+Au столкновениях

Основные полложения, выносимые на защиту.

- Впервые измеренные инвариантные спектры по поперечному импульсу, факторы ядерной модификации идентифицируемых заряженных адронов (π[±], K[±], p, p̄), а также величины отношений выходов π⁻/π⁺, K⁻/K⁺, p̄/p, K⁺/π⁺, K⁻/π⁻, p/π⁺, p̄/π⁻ в столкновениях p+Al, ³He+Au, Cu+Au при энергии = 200 ГэВ и в столкновениях U+U при энергии =193 ГэВ.
- Значения температуры кинетического вымораживания (T₀) и средних скоростей коллективного потока частиц ((u_t)), измеренные как функция от количества нуклонов-участников ((N_{part})) в p+Al, ³He+Au, Cu+Au и U+U столкновениях.
- Особенности рождения π[±], K[±], p, p̄ в ³He+Au, Cu+Au, U+U столкновениях не зависят от геометрии области перекрытия сталкивающихся ядер, а определяются количеством нуклонов-участников.

- 4. В центральных столкновениях ³He+Au, Cu+Au, U+U наблюдается эффект увеличенного выхода протонов и антипротонов, что может быть объяснено доминированием вклада процессов рекомбинации в образовние иднентифицируемых заряженных адронов в диапазоне малых и промежуточных поперечных импульсов (p_T < 4 ГэB/c).</p>
- 5. В *p*+Al столкновениях, а также в периферических столкновениях ³He+Au, Cu+Au, U+U эффект увеличенного выхода протонов и антипротонов не наблюдается, что может быть объяснено доминированием вклада процессов фрагментации в образовние иднентифицируемых заряженных адронов в диапазоне промежуточных поперечных импульсов (2 ГэВ/*c* < *p*_T < 4 ГэВ/*c*).

- Впервые измерены инвариантные спектры рождения по поперечному импульсу заряженных адронов (π[±], K[±], p, p̄) в столкновениях p+Al, ³He+Au, Cu+Au при энергии √s_{NN} = 200 ГэВ и в столкновениях U+U при энергии √s_{NN} = 200 ГэВ.
- 2. Впервые получены факторы ядерной модификации для π^{\pm} , K^{\pm} , p, \bar{p} в столкновениях p+Al, ³He+Au, Cu+Au при $\sqrt{s_{NN}} = 200$ ГэВ и в столкновениях U+U при $\sqrt{s_{NN}} = 200$ ГэВ.
- 3. Выпервые измерены отношения выходов π^-/π^+ , K^-/K^+ , \bar{p}/p , K^+/π^+ , K^-/π^- , p/π^+ , \bar{p}/π^- в столкновениях p+Al, ³He+Au, Cu+Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ и в столкновениях U+U при $\sqrt{s_{NN}} = 200$ ГэВ.

- Π
- Полученные значения инвариантных спектров заряженных адронов могут быть использованы для уточнения параметров теоретических моделей, реализованных в пакетах прикладных программ, таких как AMPT, HIJING, PHSD и др. В частности, для уточнения радиуса рекомбинации в рекомбинационных моделях, реализованных в таких программных пакетах как AMPT, PHSD.
- Методика измерения выходов заряженных адронов, представленная в данной работе, может быть применена в аналогичных исследованиях таких экспериментов, как SPD и MPD.

Достоверность

Список конференций

- 1. Ядро-2020. (Дубна, РФ)
- 2. ІСРРА-2020., (Москва, РФ)
- 3. PhysicA.SPb 2020. (Санкт-Петербург, РФ)
- 4. Ядро-2021. (Санкт-Петербург, РФ)
- 5. PhysicA.SPb 2021. (Санкт-Петербург, РФ)
- 6. Lomonosov Conference. 2021 (Москва, РФ)
- 7. PhysicA.SPb 2022. (Санкт-Петербург, РФ)
- 8. ІСРРА-2022. (Москва, РФ)
- 9. ICNFP-2022. (Крит, Греция)
- Конференция имени Б. С. Ишханова "Концентрированные потоки энергии в космической технике, электронике, экологии и медицине" (Москва, РФ)
- 11. Научная сессия секции ядерной физики ОФН РАН (Дубна, РФ)

Список публикаций 1/2

- Π
- Identified charged-hadron production in *p*+Al, ³He+Au and Cu+Au collisions at √s_{NN}=200 GeV and in U+U collisions at √s_{NN}=193 GeV / L. D. M. [et al.] (PHENIX Collaboration) // Physical Review C. 2024. Vol. 109. P. 054910.
- Charged Hadron Production in Cu+Au Collisions at 200 GeV in the PHENIX Experiment / L. D. M. [et al.] // Physics of Particles and Nuclei. – 2022. – Vol. 2, no. 53. – P. 261–264.
- 3. Comparative analysis of proton production as a function of quark content and collision geometry / L. D. M. [et al.] // Journal of Physics: Conference Series. 2020. (Scopus, WoS).
- Charged pion, kaon, proton and antiproton production in large collision systems / L. D. M. [et al.] // Journal of Physics: Conference Series. – 2021. – (Scopus, WoS).

- Π
- 5. Influence of quark content and collision geometry on proton production in heavy ion collisions / L. D. M. [et al.] // Journal of Physics: Conference Series. 2020. (Scopus, WoS).
- PHENIX Results on Hadron Production in Large Collision Systems / L. D. M. [et al.] // Moscow University Physics Bulletin. — 2022. — Vol. 77. — P. 232—233.
- Measurement of Charged Hadron Production in Relativistic Ion Collision Systems / D. M. Larionova [et al.] // Physics of Particles and Nuclei. – 2023. – Vol. 54, no. 1. – P. 380–383
- 8. Recent Results from the PHENIX Experiment / L. D. M. [et al.] // Physics of Atomic Nuclei. 2024. Vol. 87, no. 1. P. 306—310

Спасибо за внимание!

Эксперимент PHENIX

Измерены инвариантные p_T и m_T спектры для π^{\pm} , K^{\pm} , p, \bar{p} в p+Al, ³He+Au, Cu+Au и U+U столкновениях.

Модель радиально расширяющейся термализованной системы

$$\frac{1}{2\pi m_T} \frac{d^2 N}{dm_T dy} = \frac{1}{2\pi T (T+m_0)} \cdot A \cdot exp \left(-\frac{m_T - m_0}{T}\right)$$

$$\langle E_{kinetic} \rangle = \langle E_{thermal} \rangle + \langle E_{collective} \rangle$$

$$T = T_0 + \langle u_t \rangle \cdot m_0$$

$$T_0 - \text{температура кинетического «вымораживания»}$$

 $\langle u_t
angle$ – средняя скорость радиального потока частиц

Адронизация

Фрагментация

- Степенное убывание инвариантных *р*_т спектров;
- \cdot $p_T\gtrsim$ 3 ГэВ/с

Рекомбинация

- Экспоненциальное убывание инвариантных *р*т спектров;
- \cdot $p_T \lesssim$ 3 ГэВ/с
- КГП

Адронизация

- Рекомбинация *p*_T ≤ 3 ГэВ/*с*
- Фрагментация *p*_T ≥ 3 ГэВ/*с*

Увеличенный выход барионов

Согласно модели рекомбинации:

• импульс бариона:

 $p_B = p_{q1} + p_{q2} + p_{q3}$

- импульс мезона: p_M = p_{q1} + p_{q2}
- экспоненциальное убывание спектров

 → инвариантный p_T спектр барионов смещается относительно инвариантного p_T спектр мезонов в сторону больших p_T
 → при 1.5 ≤ p_T ≤ 5 ГэВ/с наблюдается увеличение значений p/π

Признак образования КГП

В p + p столкновениях $p/\pi < 0.35$