GPU work at Glasgow

Benchmarking + Interactive Compute

- Y Universit
> G”d of Glasgoxx

VVVVVVVVVVVVVV

Albert Borbely (Bruno) albert.borbely@cern.ch 04/10/2024

mailto:albert.borbely@cern.ch

A step towards GPU benchmarking

Using Celeritas ATLAS Tile calorimeter test run

The Celeritas project is aimed at
developing GPU-based Monte Carlo
simulations in HEP

Tile extended barrel

Tile barrel

LAr hadronic " o s “

end-cap (HEC) — AR g~ S

C Jire nt Iy fOC U Sed on E M p hyS I CS €. g « LAr electromagnetic . 0,

the ATLAS Tile calorimeter

| got in touch with the Celeritas team
with the goal of setting up a
benchmark

Work is still on going and results are
preliminary

end-cap (EMEC)

"""""

LAr electromagnetic
barrel

GPU benchmarking: step 1

CPU vs GPU comparison

Using the ATLAS Tile Calorimeter as a test geometry

Using Celeritas in GPU and CPU mode
2 run parameters were varied:
 Number of primaries
 |nitial particle energy

The higher the parameters

—> more intensive job

—> more work offloaded to GPU

—> greater reduction in duration/energy

@ lowest (N64 & E16 GeV) ~ 22% & 33% decrease in job

energy & duration respectively with GPU

@ highest (N250 & E180 GeV) ~ 42% & 54% decrease in

job energy & duration respectively with GPU

Plenty of gains to be had :)

(00)
o
I

(@)
o
I

D
o
I

System Energy (Wh)

N

Duration (min)

CPU vs GPU run comparisons: Primaries vs Particle Energy

ATLAS Tile Calorimeter

N
]

N
|

(
(
- = Enegy (GeV) :
(
(

- Enegy (GeV) :
Enegy (GeV) :

- Enegy (GeV) :

— Enegy (GeV) : cPU

(@)
N

CPU

e
~ A *-

~CPU

*)<
04 100 150 200 250
Primaries

GPU benchmarking: step 2

Details

CPU threads set to 32
System Power gathered with IPMI
GPU Power gathered with NVML
e —> Some differences with sampling...
CPU Energy ~ Syst. energy - GPU energy
e Plan to physically pull out cards in the future

System: GPU 2xa100 (80GB),
CPU 2x AMD EPYC 7443 x48 cores,
RAM 251 GB

To keep things consistent 2 cpu jobs were launched in parallel as well as 2 gpu
jobs (one targeting each card), so values shown are for two jobs in parallel in both
cases

GPU variant doesn’t always maximise GPU utilisation —> need to think about
CPU/GPU —> to maximise GPU utilisation

All jobs being launched in docker containers, to deal with dependancies,
environment and installation. Also makes GPU management easier.

(Wh) syst: energy 3.28; gpu 1: energy 0.21; gpu 2: energy 0.22;
Duration: 19.0 s

—— syst power
o i gpu 1 power J
CI;) 500 —— gpu 2 power
®) I_/
a 250 A

—— gpu 1 memory %

20 - gpu 2 memory %
—— Syst memory %

>
O
@)
S
O 10 A
=
O 1 — gpu 1 gpu util
gpu 2 gpu util

0\0 —— Syst cpu %
- i
3 50
O
d
n
A
O -

0.0 2.5 5.0 7.5 100 125 150 17.5
Time
(Wh) syst: energy 2.21; gpu 1: energy 0.26; gpu 2: energy 0.26;
Duration: 12.69 s

CPU

1L

LXK
—— gpu 1 memory % ;
E\ gpu 2 memory %
—_— 0,
g 20 . Syst memory %
)
=

100 - — & GPU

—— gpu 1 gpu util — T\ —oo— |
gpu 2 gpu util
50 - \/
4 j \

Util

o

Syst Cpu %
N o
o Ul o

Power

Util

(Wh) syst: energy 2.21; gpu 1: energy 0.26; gpu 2: energy 0.26;
Duration: 12.69 s

750 A
500 -
250 -

Memory

100

Syst Cpu %

(Wh) syst: energy 6.7; gpu 1: energy 0.76; gpu 2: energy 0.77;

50 A

n
o
1

N
Ul
1

o
1

(@)
1

Duration: 33.76 s

750 -

Power

Memory

100 7

util

Syst Cpu %

(9)

N
(92

o O

o

500 -
250 -

—— syst power

gpu 1 power
—— gpu 2 power

—

— N

—— gpu 1 memory %
gpu 2 memory %
— Syst memory %

/ GPU
S N
—— gpu 1 gpu util Pl) AP
gpu 2 gpu util s \\ ’\Vf\JW
il i il
—— Syst cpu %
0 5 10 15 20 25 30 35
Time

—— syst power
gpu 1 power
—— gpu 2 power
—— gpu 1 memory % B
gpu 2 memory %
1 —— Syst memory % G PU
—— gpu 1 gpu util — O\~ N64
gpu 2 gpu util / \
/| \
—— Syst cpu %
T T T T T T T
0 2 4 §) 8 10 12
Time

E16
N250

GPU

750 A
- - S 500 -
enchmarking: ::
step 3
Job “work” heavily depends on 108 -
parameters used _—
CPU variants effectively use a R
constant fraction of CPU resources S5
(32 threads per job) o
GPU variant is constantly offloading
parts of the job to the GPU
(Wh)

e —> This causes fluctuations in

(Wh) syst: energy 54.06; gpu 1: energy 6.61; gpu 2: energy 6.71;

Duration: 256.59 s

—— gpu 1 gpu util W ',,*\ﬁ MM'W
|)r |

‘“Jl m

n
1)

—— syst power
gpu 1 power
—— gpu 2 power M
~r
—— gpu 1 memory % \
gpu 2 memory %
| —— Syst memory % G PU _\
j - | E180
PR TR G N250

. W‘l, Nﬂw [w"‘\w

—— Syst cpu %

i

0 50

100

150 200 250

Time

syst: energy 106.11; gpu 1: energy 6.34; gpu 2: energy 6.61;
Duration: 561.23 s

GPU utilisation — sustpover N\
(see left/top-right plots) g 20 o
o 250 A
Need to think about how to ————
maximise GPU utilisation, often most 2207 guzmenoyx
expensive part should not be sitting § 10 - CPU
idle E180
0BT =t N250
Current setup allowsajobtohog1 E o.00-
GPU
—0.05 A - .
O\O —— Syst cpu %
« —> Potential solution to allow g 50-
multiple job slots to share a GPU 3
resource "o
0 100 200 300 400 500
5 Time

GPU benchmarking

Acknowledgments and Future steps

Acknowledgments:

 Many thanks to the Celeritas team
for getting me started and dealing
with my emails/slack messages

e |n particular to:

 Ben Morgan, email

e Seth R. Johnson, emall

e Julien Esseiva, emall

Future steps:
Physically pull out GPU cards for CPU run

Attempt to run multiple jobs in parallel to maximise
GPU/CPU utilisation

Test GPU MIG / Compute Instances for multiple
process use of GPU

Attempt to define an event “throughput” per node
Compile and run on Grace + A100
Run the CMS variation of the job

e —> more complex test geometry

« —> test new geometry definition format

mailto:ben.Morgan@warwick.ac.uk
mailto:sethrj.ornl@icloud.com
mailto:jesseiva@lbl.gov

On-Grid Interactive GPU development

Many problems to solve

Problems vaguely fall into 2 categories:

GPU problems

Variety of cards (what to target)
Variety of software tools

Large dependancy issues

Because of their nature user jobs tend to be
small enough to not need to scale out to the Grid

The idea is to facilitate on-Grid development and
reduce the overhead in submitting Grid jobs via a
submission engine

* |Interactive job develop problems
(Analysis Facilities?)

* User authentication

* Flexible development environment
« —> allow users to install packages
 —> maintain site security

» Data storage / integration

e Scalability, i.e. easily scale out to the rest of
the Grid

Authentication

User connection Strategy

Currently authenticated with x509 certificates (for now)

A user can request an interactive job via our test ce: ce-test.gla.scotgrid.ac.uk

Aimed at our GPU queue: (queue=“condor_gpu")
The user supplies an email, ssh key, and initiates an interactive job via the int_condor executable on the node.
This then spins up a docker container and emails ssh instructions to the user

* The node is not directly exposed to the internet

* You have to login via an ssh proxy and target a specific port range on the node

* This then lands you directly in the container with only basic user privileges

* Jo add a layer of security only connections from institutes are currently accepted:
Glasgow, CERN, DESY, Nikhev

* This final step causes some issues as | can’t configure another institutes machines / requires a certain amount of user
competence to properly configure the user’s ssh config

e Looking to bullet proof this step by taking this out of the user’s hands

http://ce-test.gla.scotgrid.ac.uk

Container Solution

Development Environment

* Docker vs Apptainer (Singularity) were tested for this
* Docker wins, especially for interactive GPU development use

* Apptainer essentially doesn’t allow for interactive containers and GPU interaction
simultaneously

 No matter what SUID variations you use
 Docker —> Apptainer conversion is straightforward

* Once development is over and a user wants to submit their job to the Grid it can be
converted to Apptainer (the standard Grid tool)

* This allows for environment transportability

9

Transparent Data access

Connect with the Ceph cluster

Ceph-FS partitions can directly be mounted with XrootD into a directory in the container, currently set
up for Ligo VO (as we have no pre-existing data at Glasgow)

This works for any type of file Ii.e. hdf5 ect. not just root files.

Allows users to natively access files in a POSIX file system directly on the Ceph cluster, allowing to
easily read/write. Care should be taken when doing |I/O heavy operations.

Draw backs: heavily relies on XrootD and Ceph-FS. Mounted instances have crashed before causing
bizarre behaviour in the chain of mounted folders.

* In the past the XrootD was running on the host system, this has now been moved in to the container

ATLAS data is not stored in CEPH-FS so users have to rely on root files and their ability to stream over
XrootD

* Looking into alternatives to access other types of files ect. hdf5 without the need to effectively
download them

10

Development Environment 2

Initial base packages

Current plan for user defined docker images are implemented via DockerFiles on GitHub

Each job builds a fresh docker image (not necessary) potential plans to implement a
registry of sorts once user testing is further along

Plans to have groups of users (not every individual) be able to submit custom docker
iImages to the repo which would be merged in AFTER manual review —> limit attack
surface

CVMES is available in each container

Spack has proved a versatile package manager to install packages without privileged root
permissions

Python / pip will also be available

11

Current Issues
Ongoing

Condor loses control of the docker process when the container is launched
This results in the job not being killable via arc / condor

If the container is stopped then the job is also shown as finished by arc
Currently container stays alive for eternity (or until | restart the node)

A way to stop the container and commit the changes and store / manage them planning to
potentially use rucio for this

A way to trim the interactive bits off the container (i.e. ssh daemon) for batch submission
Currently investigating ways to share GPUs between users i.e. MIG slices and Compute Instances

Currently all GPU instances are attached to a GPU condor slot

12

Next steps

Grid submission framework

Once the development environment problems have been solved and tested

Effort will be focused on the submission framework to make use of the wider GPUs available on the
Grid i.e. the CMS trigger :)

It will only use tools readily available in the Grid community i.e. apptainer
It will involve moving data around to the relevant sites i.e. Rucio
Trimming and converting the container into apptainer format

Checking the sites various queues have available GPUs ect.

Submitting and then gathering the required data.

|deally re-using the existing infrastructure already in-place with the addition of the custom container
images.

13

