
Albert Borbely (Bruno) albert.borbely@cern.ch 04/10/2024

GPU work at Glasgow
Benchmarking + Interactive Compute

1

mailto:albert.borbely@cern.ch

A step towards GPU benchmarking
Using Celeritas ATLAS Tile calorimeter test run

• The Celeritas project is aimed at
developing GPU-based Monte Carlo
simulations in HEP

• Currently focused on EM physics e.g.
the ATLAS Tile calorimeter

• I got in touch with the Celeritas team
with the goal of setting up a
benchmark

• Work is still on going and results are
preliminary

2

GPU benchmarking: step 1
CPU vs GPU comparison

• Using the ATLAS Tile Calorimeter as a test geometry

• Using Celeritas in GPU and CPU mode

• 2 run parameters were varied:

• Number of primaries

• Initial particle energy

• The higher the parameters  
—> more intensive job  
—> more work offloaded to GPU 
—> greater reduction in duration/energy

• @ lowest (N64 & E16 GeV) ~ 22% & 33% decrease in job
energy & duration respectively with GPU

• @ highest (N250 & E180 GeV) ~ 42% & 54% decrease in
job energy & duration respectively with GPU

• Plenty of gains to be had :)

3

GPU benchmarking: step 2
Details

4

• CPU threads set to 32

• System Power gathered with IPMI

• GPU Power gathered with NVML

• —> Some differences with sampling…

• CPU Energy ~ Syst. energy - GPU energy

• Plan to physically pull out cards in the future

• System: GPU 2xa100 (80GB),  
 CPU 2x AMD EPYC 7443 x48 cores, 
 RAM 251 GB

• To keep things consistent 2 cpu jobs were launched in parallel as well as 2 gpu
jobs (one targeting each card), so values shown are for two jobs in parallel in both
cases

• GPU variant doesn’t always maximise GPU utilisation —> need to think about
CPU/GPU —> to maximise GPU utilisation

• All jobs being launched in docker containers, to deal with dependancies,
environment and installation. Also makes GPU management easier.  

CPU

GPU

GPU
benchmarking:

step 3
• Job “work” heavily depends on

parameters used

• CPU variants effectively use a
constant fraction of CPU resources
(32 threads per job)

• GPU variant is constantly offloading
parts of the job to the GPU

• —> This causes fluctuations in
GPU utilisation  
(see left/top-right plots)

• Need to think about how to
maximise GPU utilisation, often most
expensive part should not be sitting
idle

• Current setup allows a job to hog 1
GPU

• —> Potential solution to allow
multiple job slots to share a GPU
resource

5

E16
N250

E16
N64

E180
N250

E180
N250

CPU

GPUGPU

GPU

GPU benchmarking
Acknowledgments and Future steps

Acknowledgments:

• Many thanks to the Celeritas team
for getting me started and dealing
with my emails/slack messages

• In particular to:

• Ben Morgan, email

• Seth R. Johnson, email

• Julien Esseiva, email

6

Future steps:

• Physically pull out GPU cards for CPU run

• Attempt to run multiple jobs in parallel to maximise
GPU/CPU utilisation

• Test GPU MIG / Compute Instances for multiple
process use of GPU

• Attempt to define an event “throughput” per node

• Compile and run on Grace + A100

• Run the CMS variation of the job

• —> more complex test geometry

• —> test new geometry definition format  

mailto:ben.Morgan@warwick.ac.uk
mailto:sethrj.ornl@icloud.com
mailto:jesseiva@lbl.gov

On-Grid Interactive GPU development
Many problems to solve

Problems vaguely fall into 2 categories:

7

• GPU problems

• Variety of cards (what to target)

• Variety of software tools

• Large dependancy issues

• Because of their nature user jobs tend to be
small enough to not need to scale out to the Grid

• The idea is to facilitate on-Grid development and
reduce the overhead in submitting Grid jobs via a
submission engine

• Interactive job develop problems  
(Analysis Facilities?)

• User authentication

• Flexible development environment

• —> allow users to install packages

• —> maintain site security

• Data storage / integration

• Scalability, i.e. easily scale out to the rest of
the Grid

Authentication
User connection Strategy

• Currently authenticated with x509 certificates (for now)

• A user can request an interactive job via our test ce: ce-test.gla.scotgrid.ac.uk

• Aimed at our GPU queue: (queue=“condor_gpu")

• The user supplies an email, ssh key, and initiates an interactive job via the int_condor executable on the node.

• This then spins up a docker container and emails ssh instructions to the user

• The node is not directly exposed to the internet

• You have to login via an ssh proxy and target a specific port range on the node

• This then lands you directly in the container with only basic user privileges

• To add a layer of security only connections from institutes are currently accepted: 
Glasgow, CERN, DESY, Nikhev

• This final step causes some issues as I can’t configure another institutes machines / requires a certain amount of user
competence to properly configure the user’s ssh config

• Looking to bullet proof this step by taking this out of the user’s hands

8

http://ce-test.gla.scotgrid.ac.uk

Container Solution
Development Environment

• Docker vs Apptainer (Singularity) were tested for this

• Docker wins, especially for interactive GPU development use

• Apptainer essentially doesn’t allow for interactive containers and GPU interaction
simultaneously

• No matter what SUID variations you use

• Docker —> Apptainer conversion is straightforward

• Once development is over and a user wants to submit their job to the Grid it can be
converted to Apptainer (the standard Grid tool)

• This allows for environment transportability

9

Transparent Data access
Connect with the Ceph cluster

• Ceph-FS partitions can directly be mounted with XrootD into a directory in the container, currently set
up for Ligo VO (as we have no pre-existing data at Glasgow)

• This works for any type of file i.e. hdf5 ect. not just root files.

• Allows users to natively access files in a POSIX file system directly on the Ceph cluster, allowing to
easily read/write. Care should be taken when doing I/O heavy operations.

• Draw backs: heavily relies on XrootD and Ceph-FS. Mounted instances have crashed before causing
bizarre behaviour in the chain of mounted folders.

• In the past the XrootD was running on the host system, this has now been moved in to the container

• ATLAS data is not stored in CEPH-FS so users have to rely on root files and their ability to stream over
XrootD

• Looking into alternatives to access other types of files ect. hdf5 without the need to effectively
download them

10

Development Environment 2

Initial base packages

• Current plan for user defined docker images are implemented via DockerFiles on GitHub

• Each job builds a fresh docker image (not necessary) potential plans to implement a
registry of sorts once user testing is further along

• Plans to have groups of users (not every individual) be able to submit custom docker
images to the repo which would be merged in AFTER manual review —> limit attack
surface

• CVMFS is available in each container

• Spack has proved a versatile package manager to install packages without privileged root
permissions

• Python / pip will also be available

11

Current Issues
Ongoing

• Condor loses control of the docker process when the container is launched

• This results in the job not being killable via arc / condor

• If the container is stopped then the job is also shown as finished by arc

• Currently container stays alive for eternity (or until I restart the node)

• A way to stop the container and commit the changes and store / manage them planning to
potentially use rucio for this

• A way to trim the interactive bits off the container (i.e. ssh daemon) for batch submission

• Currently investigating ways to share GPUs between users i.e. MIG slices and Compute Instances

• Currently all GPU instances are attached to a GPU condor slot

12

Next steps
Grid submission framework

• Once the development environment problems have been solved and tested

• Effort will be focused on the submission framework to make use of the wider GPUs available on the
Grid i.e. the CMS trigger :)

• It will only use tools readily available in the Grid community i.e. apptainer

• It will involve moving data around to the relevant sites i.e. Rucio

• Trimming and converting the container into apptainer format

• Checking the sites various queues have available GPUs ect.

• Submitting and then gathering the required data.

• Ideally re-using the existing infrastructure already in-place with the addition of the custom container
images.

13

