
XKIT:
XCache, Xrd-PFC, …,

XRootD
Kubernetes 
Integration 

Testing
Rob Currie, Wenlong Yuan,

Peter Clarke



Intro

• Apologies, a very packed set of slides for 10min.

• Some of this I’ll try and move quicker over, interested people can 
look online later.

• Happy to discuss this in more detail over tea/coffee/fresh-air.

• We’re looking for some input/wisdom from the community to 
improve this ☺ Please tell me I’m wrong.



Supporting XCache

• XCache is in use by multiple UK sites for Virtual Placement.

• VP relies on GeoIP ordering of replicas as returned from RUCIO.

• Known to be broken. Was “fixed” for DUNE several months ago. Working on fixing globally.

• Fix expected to take a few weeks of development.

• Integration into RUCIO will likely be ~6months or so (my naïve estimate).

• Expected that the fix might be possible through server-side.  If not, clients need to update .

One example of UK 
XRootD usage.



Motivations for XRootD Integration Testing

• In my opinion this is a similar situation to when I worked on Ganga.

1. Large tool with large codebase & many uses.
2. Many communities using it to solve their problems.
3. Normally works extremely well.
4. Highly configurable with many plugins.
5. Not every community is running bleeding edge clients/versions.

• Testing is difficult because the phase-space is so large.
> 3 large dimensions; client version, server version & network topology
> many compact dimensions, plugins options, server options, expected pass/fail



Setting the Scene

• Larger UK sites use XRootD in different ways.
  Different features on/off for different topologies…

• Quite a few sites compile/patch/provision their own version for one 
reason or another. 
  Not expected to change in short-term, so taken as written.

• Question that has come up in UK storage meeting a few times is:

“What is the golden version where this config (last) worked?”



How much do we want to test?



How much do we want to test?



How much do we want to test?

The topology of a “typical XRootD install” 
seems to vary even within UK.

Would be good to try and identify the key 
components of this.

Want to test/check/know-how-to-use all 
features and best practice(s).



Test Management

• XRootD Integration Testing requires 2 parts:

Client:

 → Test cmdline tools (xrdcp, xrdfs, …)
 → Test Python3 client API(s)
 → Double-Check data transfers work as expected
 → Should we be testing C++ API?                                             Yes/No ?

Server:

 → Want to check server works as expected (logs/output)
 → Want to test read/write transfers work as expected
 → Check server-side features work as expected                    (on/off)



Containers to the Rescue!



Good news! It’s 2024;   Containers Exist

• Containers make deploying complex software stacks easy.

• Makes setting up (test) environments more reproducible.
• Can be used as sandboxes.

(shameless plug for one of my other projects here:  https://github.com/gridpp-Edi/appBox)

• However, containers aren’t the full story…

• Containers require configurations, network plumbing, namespaces…

https://github.com/gridpp-Edi/appBox


XRootD is already used in Containers

• We need a minimal container for testing!
• Container design often ends up optimizing for 1 of 2 goals:

 - Deployability:  *

    Container design used by perfSonar, Gitlab, XRootD4CMS.
    Deploying several services within a single container.
    Not-so-great for seeing what’s going on, debugging, or fixing/testing…

 - Reproducibility:

    This is what you see in more commercially supported containers.
    Closer to the UNIX philosophy of “do one thing and do it well”
    Minimal, great for testing.

* Yes, I just made up a word…



XRootD Package/Image Management

• Why is this important? Containers are backed by images; 
We are now ‘rolling our own’ container-images:

1. Using the rpm build recipe from the XRootD github repo
(standing on the shoulders of giants!)

2. Built rpms from source on Alma9 base image(s)
3. Packages installed via dnf with all normal extensions for XRootD and dependencies
4. Image is tagged with release version
5. New images published to dockerhub
6.  No security/configuration/gremlins baked into images

Deploying these containers means we have additional runtime control how we mount in 
CRL/config/data/cute-cuddly-kittens from our host into the container.

IF someone else 
does a better job 
we can use their 
images(!).



Service Management                 Container Orchestration

• OK, we have an image, so can launch containers/run-tests.

• We started with docker-compose to manage multiple services.
• This ended quickly.

• Setting up a single transfer of:

   POSIX → PFC → Destination     using x509 authentication doesn’t work *

• Docker/Podman(-compose) aren’t really setup in a way that makes full-fat 
x509 based security easy/happy…
     (I don’t expect tokens to be any easier)

*well, not easily, nicely…



Service Management
Let’s fix the problem of complex container management, with… more containers!



Service Management (2)

• Each XRootD service needs the following:

 → CRL/VOMS mounted/updated from host
 → Server config mounted from host
 → Test data mounted from host *
 → DNS entries pointing to instance
 → Hostcert mounted from host (per-instance)
 → External network connectivity

• After evaluating a few options, we decided to go with Kubernetes

*So far, biggest use-case is POSIX, but plan to test CEPH-FS



“There’s an API for that!”

• Almost everything “speaks” Python3 these days.

(The less we code, the less we debug, trying to keep things minimal)

•  Kubernetes, Docker, S3, OpenSearch, Django, …

• Most of the ‘heavy lifting’ for projects like this has been done for us.

• With that in mind, we decided to start working out what to do.

• Not all work is in Python3… but enough.



Running Tests



The Plan…



What do we have so far?



What do we have so far?
Containers on 

DockerHub
Test Client & Server 

logfiles on (private!) S3

Test Metadata, 
success/fail, 

timestamps, …

(Not bad for <100 lines of Python!)



What do we have so far?

• Simple, entirely dynamically generated web-UI.

Not yet public, plan to add some basic auth.
Have seen bugs on the grid with credentials leaking into logging streams…

• Using a github organization for managing the various pieces of this:
https://github.com/gridpp-Edi 

• Tests repo:
https://github.com/gridpp-Edi/xrootd-ci-tests

• Server configs repo:
https://github.com/gridpp-Edi/xrootd-helm-charts

 Input Welcome!

(Still empty as of 
August 2024 
aiming for initial 
tests before CHEP)

Starting to populate this repo 
for testing ☺

https://github.com/gridpp-Edi
https://github.com/gridpp-Edi/xrootd-ci-tests
https://github.com/gridpp-Edi/xrootd-helm-charts


Site Perspective



From the Site’s Perspective

• On the face of it, this has lots of moving parts:

DNS,  VOMS,  Kubernetes,  multiple new systems to 
update/maintain,  S3,  OpenSearch/ElasticSearch,  message 
queues,  credentials…

• However;

All these services are being re-used by some other project.
Not just throwing up lots of services for a single goal.



From the Site’s Perspective

• Work on this allows us to:

1. Support the in-development protoDUNE DAQ offline monitoring
2. Support DUNE-DM monitoring
3. Support GridPP-FTS monitoring
4. Support UoE PPE-Labs clean-room certification
5. Gain valuable experience with Kubernetes
6. Support GridPP storage efforts



Conclusions



Conclusions

• Have successfully run initial tests against XRootD using our pipeline.

 - Data transfers in/out with x509 auth using containers.

• Have worked out most of the annoying bits in setting this up.

• Have a minimal web-UI which we aim to share ASAP



Conclusions – Next Steps

• Need to expand our testing topology (helm charts).
 - So far have server-side configs for XRD-POSIX and XRD-PFC.
 - Only testing X509 auth but want to do more.

• Need to flesh out some additional tests.
 - Successfully written/read data from POSIX.
 - Want to automatically test 3rd-party copy between containers.

• Need to work-out best way to handle version-dependence in testing.
 - Images are tagged with RPM release versions
 - How far forward/back do we go for compatibility testing?





Who, Where, What/Why, When?

• Edinburgh; Rob & Wenlong

• Integration Testing of XRootD in production-like environments

• Integration Testing ≠ Unit Testing ≠ Build Testing ≠ Code Analysis

• Now-ish maybe / tomorrow probably 



Where do common problems come from?

Client:

1. Client code initializes
2. XRootD client initialization spawn's worker threads (pool)
3. Transfers/Access work by queueing task to be run by worker
4. Tasks in queue get launched according to internal XRootD logic
5. Workers must complete and correctly return
6. Client code disconnects and cleans up workers



Where do common problems come from?

Server:

1. Server launches workers and connects to external port
2. Incoming connections spawn server-side work
3. Server responds with the result of its work
4. Server keeps connection open until client disconnects
5. Server keeps listening for new incoming connections



Why not just use a CI manager?

• Could have implemented CI stack on Jenkins or similar, however;

• Services such as this are regularly an interest to attackers.
• Requires boiler-plate to setup with K8S or equivalent.
• Yet another big complex service…

• Felt disadvantages of relying on such a stack are outweighed by 
the fact we can replicate most of this in <<1k Python3 boiler-plate.



Why not just use a CI manager?

• Want to make results semi-public, so efforts needed to 
sync/store/access data from Open/Elastic-Search, s3.

• Want to make logging artefacts semi-public.

(I’m assuming there’s a risk here so unique creds/certs for testing)

• Ideally would like to receive ideas/input for future tests.

• Ideally would like to receive ideas/input for future topologies/
helm-charts.



Why not just use a CI manager?

• 3 large dimensions in testing, client-version, server-version and 
topology…

• Considering using a CI-manager “on-top” of everything else to 
track/manage running of our test-infrastructure.

• Probably just going to use Jenkins as a “Web-managed crontab”



Kubernetes Setup

Operating in a limited environment.

 - Minimal IP availability within (almost full!) shared VLAN
 - Limited hardware (VMs all the way down)
 - Nobody is 100% working on this 24/7

But:

 - We manage our own DNS
 - Have experience with containerization
 - We’re sharing time/effort between projects

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://www.schabell.org/2023/02/cloud-native-k8s-edinburgh-meetup-3-pitfalls-cloud-data-slides.html
https://creativecommons.org/licenses/by-nc-sa/3.0/


Kubernetes – Setup



Kubernetes – Networking



From the Site’s Perspective

With the experience from this work, we plan to setup a larger Kubernetes instance to 
support our other work.

We have ~40 containerized services on multiple hosts.
This is already getting slightly difficult to manage.

Gaining more and more experience with nginx as a tool for managing traffic.
(if only it “spoke” root:// …)

Having access to our own DNS means we’ve been able to test/adapt quickly as our 
equipment is physically split over 4 VLANs and 3 datacenters.

  – Also looking into software-based networking to “save the day” with the fact our kit is 
diversely spread out.


	Slide 1: XKIT: XCache, Xrd-PFC, …,  XRootD Kubernetes Integration Testing
	Slide 2: Intro
	Slide 3: Supporting XCache
	Slide 4: Motivations for XRootD Integration Testing
	Slide 5: Setting the Scene
	Slide 6: How much do we want to test?
	Slide 7: How much do we want to test?
	Slide 8
	Slide 9: Test Management
	Slide 10
	Slide 11: Good news! It’s 2024;   Containers Exist
	Slide 12: XRootD is already used in Containers
	Slide 13: XRootD Package/Image Management
	Slide 14: Service Management                 Container Orchestration
	Slide 15: Service Management
	Slide 16: Service Management (2)
	Slide 17: “There’s an API for that!”
	Slide 18
	Slide 19: The Plan…
	Slide 20: What do we have so far?
	Slide 21: What do we have so far?
	Slide 22: What do we have so far?
	Slide 23
	Slide 24: From the Site’s Perspective
	Slide 25: From the Site’s Perspective
	Slide 26
	Slide 27: Conclusions
	Slide 28: Conclusions – Next Steps
	Slide 29
	Slide 30: Who, Where, What/Why, When?
	Slide 31: Where do common problems come from?
	Slide 32: Where do common problems come from?
	Slide 33: Why not just use a CI manager?
	Slide 34: Why not just use a CI manager?
	Slide 35: Why not just use a CI manager?
	Slide 36: Kubernetes Setup
	Slide 37: Kubernetes – Setup
	Slide 38: Kubernetes – Networking
	Slide 39: From the Site’s Perspective

