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 Preliminaries: ReBB model analysis of pp and pതp data

• the Real extended Bialas-Bzdak (ReBB)
model describes elastic 𝐩𝐩 and 𝐩ഥ𝐩 𝒅𝝈/𝒅𝒕
data in a statistically acceptable way
(CL≥0.1%) in the kinematic region:

• significant model dependent odderon
signal is observed

• main goal: to improve the ReBB model to
have a statistically acceptable (CL≥0.1%)
description to elastic 𝐩𝐩 and 𝐩ഥ𝐩 data in a
wider kinematic range

T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021)

I. Szanyi, T. Csörgő, Eur. Phys. J. C 82, 827 (2022)

ReBB model description to the 8 TeV pp data

546 GeV ≤ s  ≤ 8 TeV

0.38 GeV2 ≤ −t ≤ 1.2 GeV2

region of 
statistically 
acceptable 
description
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• the unitarity of the 𝑆-matrix expresses the conservation of probability

• the unitarity relation in impact parameter (𝑏) representation at high energies is

• the elastic scattering amplitude 𝑡e𝑙(𝑠, 𝑏) can be written as a solution of the unitarity 
equation in terms of ෤𝜎𝑖𝑛(𝑠, 𝑏) (inelastic cross section / probability of inelastic 
scattering) 

• ෤𝜎𝑖𝑛 𝑠, 𝑏  can be calculated by using probability calculus and R. J. Glauber’s multiple 
diffractive scattering theory

𝑆𝑆† = 𝐼

෤𝜎𝑖𝑛 𝑠, 𝑏 = 2 ℐ𝑚 𝑡e𝑙 𝑠, 𝑏 − |𝑡e𝑙(𝑠, 𝑏)|2 ( 𝑠 is the CM energy)

Unitarity and the elastic scattering amplitude

0 ≤ ෤𝜎𝑖𝑛 𝑠, 𝑏 ≤ 1 
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unitarity constraint



▪ in the Bialas-Bzdak (BB) p=(q,d) model the proton is a bound 
state of a constituent quark and constituent a diquark

▪ the inelastic scattering probability of two protons at a fixed 

impact parameter vector (𝑏) and at fixed constituent transverse 
position vectors ( Ԧ𝑠𝑞 , Ԧ𝑠𝑑 , Ԧ𝑠𝑞

′ , Ԧ𝑠𝑑
′ ) is given by a Glauber expansion:

The Bialas-Bzdak (BB) p=(q,d) model

Proton-proton collision in the 
quark-diquark model

A. Bialas, A. Bzdak, Acta Phys.Polon. B 38, 159-168 (2007)
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𝜎 Ԧ𝑠𝑞 , Ԧ𝑠𝑑; Ԧ𝑠𝑞
′ , Ԧ𝑠𝑑

′ ; 𝑏 = 1 − ෑ

𝑎 ∈ {𝑞,𝑑}

 ෑ

𝑏 ∈ {𝑞,𝑑}

1 − 𝜎𝑎𝑏 𝑏 + Ԧ𝑠𝑏
′ − Ԧ𝑠𝑎

• 𝜎𝑎𝑏 Ԧ𝑥 ≡
𝑑2𝜎𝑎𝑏 Ԧ𝑥

𝑑𝑥2  is the inelastic differential cross section (inelastic scattering 

probability) for the collision of two constituents at a fixed relative transverse 
position Ԧ𝑥 of the constituents

• the Glauber expansion sums the probabilities of all possible single and multiple 
binary inelastic collisions of the constituents (back scattering is prohibited)

• the collision of two protons is inelastic if at least one constituent-constituent 
collision is inelastic



▪ the probability of inelastic scattering of protons at a fixed impact parameter vector (𝑏) is 
given by averaging over the constituent positions inside the protons:

▪ 𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑  is the (transverse) distribution of constituents inside a proton

▪ the scattering amplitude in the original BB model is considered to be completely 
imaginary by neglecting its relatively small real part

▪ the 𝑠-dependence of the amplitude happens through the s-dependencies of the model 
parameters

The Bialas-Bzdak (BB) p=(q,d) model A. Bialas, A. Bzdak, Acta Phys.Polon. 
B 38, 159-168 (2007)
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෤𝜎𝑖𝑛 𝑏 = න
−∞

+∞

… න
−∞

+∞

𝑑2𝑠𝑞𝑑2𝑠𝑞
′ 𝑑2𝑠𝑑𝑑2𝑠𝑑

′  𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑  𝐷 Ԧ𝑠𝑞
′ , Ԧ𝑠𝑑

′  𝜎( Ԧ𝑠𝑞 , Ԧ𝑠𝑑; Ԧ𝑠𝑞
′ , Ԧ𝑠𝑑

′ ; 𝑏)

ǁ𝑡𝑒𝑙(𝑠, 𝑏) = 𝑖 1 − )1 − ෤𝜎𝑖𝑛(𝑠, 𝑏

𝑏 = |𝑏|

𝑇 𝑠, 𝑡 = 2𝜋 න
0

∞

ǁ𝑡𝑒𝑙 𝑠, 𝑏  𝐽0 𝑞𝑏 𝑏𝑑𝑏𝑏

𝑞 = −𝑡



▪ in the original BB model the distribution of constituents inside a proton is given in terms 
of products of Gaussians

▪ the constituent-constituent inelastic differential cross sections have also Gaussian shapes

• the constituent-constituent inelastic integrated cross sections are 

• assuming that the diquark contains twice as many partons than the quark and the 

colliding constituents do not shadow each other, 𝜎𝑞𝑞
𝑖𝑛𝑡: 𝜎𝑞𝑑

𝑖𝑛𝑡: 𝜎𝑑𝑑
𝑖𝑛𝑡 = 1 ∶ 2 ∶ 4 and the 

number of free parameters reduces to five: 𝐴𝑞𝑞, λ, 𝑅𝑞, 𝑅𝑑, and 𝑅𝑞𝑑 

The Bialas-Bzdak (BB) p=(q,d) model
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𝜎𝑎𝑏 Ԧ𝑥 = 𝐴𝑎𝑏𝑒
−

Ԧ𝑥2

𝑅𝑎
2+𝑅𝑏

2 𝑎, b ∈ {q,d}

𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 =
1 + λ2

𝑅𝑞𝑑
2 𝜋

𝑒
−

Ԧ𝑠𝑞
2

𝑅𝑞𝑑
2

𝑒
−

Ԧ𝑠𝑑
2

𝑅𝑞𝑑
2

𝛿2( Ԧ𝑠𝑑 + λ Ԧ𝑠𝑞) λ =
𝑚𝑞

𝑚𝑑

Ԧ𝑠𝑑 = −λ Ԧ𝑠𝑞

Ԧ𝑠𝑑
′ = −λ Ԧ𝑠𝑞

′

𝜎𝑎𝑏
𝑖𝑛𝑡 = ׭ 𝜎𝑎𝑏 Ԧ𝑥  𝑑2𝑥 = 𝜋𝐴𝑎𝑏(𝑅𝑎

2 + 𝑅𝑏
2)

A. Bialas, A. Bzdak, Acta Phys.Polon. 
B 38, 159-168 (2007)



• in the original BB model the differential cross section is zero around the position of 
the diffractive minimum

• as a solution, the elastic scattering amplitude was extended in a unitary manner 
leading to the Real extended Bialas-Bzdak (ReBB) model

• the ReBB model gives  a statistically acceptable description (CL≥0.1%) to elastic 𝐩𝐩 
and 𝐩ഥ𝐩 scattering in the kinematic region: 

                             0.546 TeV ≤ s  ≤ 8 TeV & 0.38 GeV2 ≤ −t ≤ 1.2 GeV2 

Real extended Bialas-Bzdak (ReBB) model

F. Nemes, T. Csörgő, M. Csanád, Int. J. Mod. Phys. A Vol. 30, 1550076 (2015) 

ǁ𝑡𝑒𝑙(𝑠, 𝑏) = 𝑖 1 − )1 − ෤𝜎𝑖𝑛(𝑠, 𝑏 ǁ𝑡𝑒𝑙(𝑠, 𝑏) = 𝑖 1 − 𝑒 )𝑖 𝛼𝑅 ෥𝜎𝑖𝑛(𝑠,𝑏 )1 − ෤𝜎𝑖𝑛(𝑠, 𝑏

T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021) I. Szanyi, T. Csörgő, Eur. Phys. J. C 82, 827 (2022)

new free parameter
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ǁ𝑡𝑒𝑙 𝑠, 𝑏 = 𝑖 1 − 𝑒−Ω(𝑠,𝑏)

ReΩ 𝑠, 𝑏 = −1/2ln 1 − ෤𝜎𝑖𝑛 𝑠, 𝑏

𝐼𝑚Ω 𝑠, 𝑏 = −α𝑅 ෤𝜎𝑖𝑛 𝑠, 𝑏𝐼𝑚Ω 𝑠, 𝑏 = 0



Motivation for Lévy α-stable generalization

▪ the main goal is to have a statistically acceptable description in a wider kinematic range

▪ the TOTEM measurement at LHC at 𝒔 = 𝟖 TeV excluded a purely exponential pp differential
cross-section in the range of four-momentum transfer squared 𝟎. 𝟎𝟐𝟕 𝐆𝐞𝐕𝟐 ≤ −𝐭 ≤ 𝟎. 𝟐 𝐆𝐞𝐕𝟐

with a significance greater than 7𝝈               TOTEM Collab., Nucl. Phys. B, 899, 527 (2015)

▪ a simple model with Gaussian impact parameter amplitude yields a purely exponential                    
t-distribution while a simple model with Levy α-stable impact parameter amplitude and 𝜶𝑳 < 𝟐 
yields a non-exponential t-distribution
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෩Tel s, b =
i + ρ0 s

2
σtot s

1

4𝜋2 න𝑑2𝑞𝑒−𝑖𝑞⋅𝑏 𝑒−
1
2 𝑞2𝐵𝐿(𝑠)

𝛼𝐿(𝑠)/2

Tel s, t = න𝑑2𝑏𝑒𝑖𝑞⋅𝑏 ෩Tel s, b
𝑑σ𝑒𝑙

𝑑𝑡
s, t =

1

4𝜋
Tel s, t 2

𝑑σ𝑒𝑙

𝑑𝑡
s, −t = 𝑎 𝑠 𝑒− 𝑡𝐵𝐿 𝑠 𝛼𝐿(𝑠)/2

𝑎 𝑠 =
1 + ρ0

2 s

16𝜋
σtot

2 s

෩Tel s, b =
i + ρ0 s

2
σtot s

1

2𝜋𝐵0 𝑠
𝑒

−
1
2

𝑏2

𝐵0(𝑠)

𝑑σ𝑒𝑙

𝑑𝑡
s, −t = 𝑎 𝑠 𝑒−𝑡𝐵0(𝑠)

Universe 2024, 10(3), 127



Lévy α-stable distributions in HEP

▪ the application of Lévy α-stable distributions
is not new in the field of high-energy physics

▪ the Cauchy-Lorentz or Breit-Wigner
distribution (𝜶𝑳 = 𝟏 case) is used to model
unstable particles

▪ the Lévy expansion technique was applied to 
describe elastic pp scattering also at 13 TeV

▪  the application of stable distributions is
widespread in heavy ion physics

10

T. Csörgő, R. Pasechnik, A. Ster, Eur. Phys. J. C 79, 62 (2019) Description to pp elastic differential cross 
section data at 13 TeV using the Lévy 

expansion technique

M. Csanád, D. Kincses, Universe 10 (2024) 2, 54



Gaussian vs Lévy α-stable distribution

▪ the bivariate Gaussian distribution centered at 𝟎 is

▪ the bivariate symmetric Levy α-stable distribution 

centered at 𝟎 is

▪ for 𝛼𝐿 = 2 the the Lévy α-stable distribution is the 
Gaussian distribution
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𝐺 Ԧ𝑥 𝑅𝐺 =
1

2𝜋𝑅𝐺
2 𝑒

−
Ԧ𝑥2

2𝑅𝐺
2

𝐿 Ԧ𝑥|𝛼𝐿 , 𝑅𝐿 =
1

2𝜋 2 න𝑑2 𝑞𝑒−𝑖𝑞⋅ Ԧ𝑥𝑒− 𝑞2𝑅𝐿
2 Τ𝛼𝐿 2

𝐿 Ԧ𝑥|𝛼𝐿 = 2, 𝑅𝐿 = 𝑅𝐺/ 2  ≡ 𝐺 Ԧ𝑥 𝑅𝐺

The bivariate symmetric Levy α-stable 
distribution for 𝑅𝐿 = 1  as a function of 𝑥 = |𝑥|  

𝐿
Ԧ𝑥
|𝛼

𝐿
,𝑅

𝐿

𝑅𝐿 = 1 

𝑥

Lévy α-stable distributions with 𝛼𝐿 < 2
have tails behaving asymptotically as a 

power law (infinite variance)

0 < 𝛼𝐿 ≤ 2



• the inelastic differential cross section for the collision of 
two constituents can be written in terms of a 
convolution of their parton distributions

• in the original BB model the parton distributions of the
constituents are Gaussian distributions

Inelastic constituent-constituent collisons

𝜎𝑎𝑏 Ԧ𝑥 = 𝐴𝑎𝑏𝜋𝑆𝑎𝑏
2 න𝑑2𝑟𝑎𝐺 Ԧ𝑟𝑎|𝑅𝑎/ 2 𝐺 Ԧ𝑥 − Ԧ𝑟𝑎|𝑅𝑏/ 2

≡ 𝐴𝑎𝑏𝜋𝑆𝑎𝑏
2 𝐺 Ԧ𝑥|𝑆𝑎𝑏/ 2

𝑆𝑎𝑏
2 = 𝑅𝑎

2 + 𝑅𝑏
2

The picture of the proton in 
the quark-diquark model

𝑎, b ∈ {q,d}

12

Ԧ𝑥 = 𝑏 + Ԧ𝑠𝑏
′ − Ԧ𝑠𝑎

Universe 2023, 9(8), 361 



• in the original BB model 𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 , the distribution of

constituents inside a proton is given in terms of 
products of Gaussians

• considering the relative distance between the quark 

and diquark (Ԧ𝑠𝑞 − Ԧ𝑠𝑑) one can write 𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑  in terms 

of a single Gaussian distribution:

• the  Dirac 𝛿 fixes the center of the mass of the proton 
making the calculations easier 

• 𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑  is normalized as ∫ 𝑑2𝑠𝑞𝑑2𝑠𝑑𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 = 1

The quark-diquark distribution

𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 = 1 + λ 2𝐺( Ԧ𝑠𝑞 − Ԧ𝑠𝑑|𝑅𝑞𝑑/ 2)𝛿2(Ԧ𝑠𝑞 + λ Ԧ𝑠𝑑)

𝜆 = 𝑚𝑞/𝑚𝑑

13

The picture of the proton in 
the quark-diquark model

Universe 2023, 9(8), 361 



Lévy α-stable generalized Bialas-Bzdak (LBB) model

𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 = 1 + λ 2𝐿( Ԧ𝑠𝑞 − Ԧ𝑠𝑑|𝛼𝐿 , 𝑅𝑞𝑑/2)𝛿2(Ԧ𝑠𝑞 + λ Ԧ𝑠𝑑) න𝑑2𝑠𝑞𝑑2𝑠𝑑𝐷 Ԧ𝑠𝑞 , Ԧ𝑠𝑑 = 1

• the parton distributions of the constituent quark and diquark are now Levy α-
stable distributions and the inelastic differential cross section for the collision of 
two constituents is:

• the distribution of the constituents inside the proton is now given in terms of a 
Levy α-stabil distribution:

𝜎𝑎𝑏 Ԧ𝑥 = 𝐴𝑎𝑏𝜋𝑆𝑎𝑏
2 න𝑑2𝑟𝑎𝐿 Ԧ𝑟𝑎|𝛼𝐿 , 𝑅𝑎/2 𝐿 Ԧ𝑥 − Ԧ𝑟𝑎|𝛼𝐿 , 𝑅𝑏/2 ≡ 𝐴𝑎𝑏𝜋𝑆𝑎𝑏

2 𝐿 Ԧ𝑥|𝛼𝐿 , 𝑆𝑎𝑏/2

𝑆𝑎𝑏
𝛼𝐿 = 𝑅𝑎

𝛼𝐿 + 𝑅𝑏
𝛼𝐿
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𝜶𝑳 is a new free parameter of the model and if 𝛼𝐿 = 2 
the BB model with Gaussian distributions is recovered

Universe 2023, 9(8), 361 



Difficulties with LBB model

• ෤𝜎𝑖𝑛 𝑏  can be written as sum of 11 different terms that are integrals of products of

Lévy α-stable distributions

• difficulties with the calculation of integrals of products of Lévy α-stable distributions

• the calculation is easy only if the integral can be written in a convolution form as in 

case of the leading order terms in ෤𝜎𝑖𝑛 𝑠, 𝑏
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෤𝜎𝑖𝑛 𝑏 = ෤𝜎𝑖𝑛
𝑞𝑞

𝑏 + 2 ෤𝜎𝑖𝑛
𝑞𝑑

𝑏 + ෤𝜎𝑖𝑛
𝑑𝑑 𝑏 − 2 ෤𝜎𝑖𝑛

𝑞𝑞,𝑞𝑑
𝑏 + ෤𝜎𝑖𝑛

𝑞𝑑,𝑑𝑞
𝑏 + ෤𝜎𝑖𝑛

𝑞𝑞,𝑑𝑑
𝑏 + 2 ෤𝜎𝑖𝑛

𝑞𝑑,𝑑𝑑
𝑏

+ ෤𝜎𝑖𝑛
𝑞𝑞,𝑞𝑑,𝑑𝑞

𝑏 + 2 ෤𝜎𝑖𝑛
𝑞𝑞,𝑞𝑑,𝑑𝑑

𝑏 + ෤𝜎𝑖𝑛
𝑑𝑑,𝑞𝑑,𝑑𝑞

𝑏 − ෤𝜎𝑖𝑛
𝑞𝑞,𝑞𝑑,𝑑𝑞,𝑑𝑑

𝑏



 Leading order terms in ෤𝜎𝑖𝑛 in the LBB model

16

Universe 2023, 9(8), 361 



Difficulties with LBB model fits to the data
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• since multivariate Lévy α-stable distributions can be given only in terms of
special functions, it is hard to perform a numerical fitting procedure

• a relatively high computing capacity and improved analytic insight is needed to
proceed with the full model

• quick solution: approximations that are valid at the low –t domain

• at low –t values, the original ReBB model had difficulties to describe the strongly
non-exponential features of the experimental data on 𝒅𝝈/𝒅𝒕 

• a simple model which is valid at the low –t domain easily illustrates the power of
the Lévy α-stable generalization



Simple Lévy α-stable model for low-|t| pp 𝒅𝝈/𝒅𝒕   

• low- 𝑡 scattering corresponds to high-𝑏 scattering and at high 𝑏 values ෤𝜎𝑖𝑛 𝑠, 𝑏 is small
• leading order term in the Taylor expansion of the amplitude in ෤𝜎𝑖𝑛 𝑠, 𝑏  dominates at

low −𝑡 values if 𝛼𝑅 is small too

• motivated by the fact that the leading order terms in ෤𝜎𝑖𝑛 𝑠, 𝑏  have Lévy α-stable 

shapes in the LBB model, ෤𝜎𝑖𝑛 𝑠, 𝑏  is approximated with a single Lévy α-stable shape

• a simple Lévy α-stable model model for low-|t| pp 𝒅𝝈/𝒅𝒕 arises 

• the model has three adjustable parameters, 𝛼𝐿, 𝑎, and 𝑏, to be determined at a given
energy

෤𝜎𝑖𝑛 𝑠, 𝑏 = ǁ𝑐 𝑠 𝐿 𝑏|𝛼𝐿(𝑠), 𝑟 𝑠

𝑑σ

𝑑𝑡
𝑠, 𝑡 =

1

4𝜋
𝑡𝑒𝑙 𝑠, 𝑡 2 = 𝑎 𝑠 𝑒− 𝑡𝑏 𝑠 𝛼𝐿(𝑠)/2

ǁ𝑡𝑒𝑙(𝑠, 𝑏) = 𝑖 1 − 𝑒 )𝑖 𝛼𝑅(𝑠) ෥𝜎𝑖𝑛(𝑠,𝑏 )1 − ෤𝜎𝑖𝑛(𝑠, 𝑏 ǁ𝑡𝑒𝑙 𝑠, 𝑏 = 𝛼𝑅(𝑠) +
𝑖

2
෤𝜎𝑖𝑛 𝑠, 𝑏

18

𝑡𝑒𝑙 𝑠, 𝑡 = න𝑑2 𝑏𝑒𝑖𝑞⋅𝑏 ǁ𝑡𝑒𝑙 𝑠, 𝑏 , Ԧ𝛥 = −𝑡

Universe 2023, 9(8), 361 



 Simple Lévy α-stable model and the data

• the non-exponential Lévy α-stable model with
𝛼𝐿 = 1.953 ± 0.004 represents the LHC TOTEM

𝑠 = 8  TeV low- 𝑡 differential cross section
data with a confidence level of 55% (publieshed)

• similarly good description is obtained to all the 
LHC data on low-|t| pp (and pതp) 𝒅𝝈/𝒅𝒕 19

Universe 2023, 9(8), 361 



20

Fits with simple Lévy α-stable model 

𝑠, GeV 𝛼𝐿
𝑎, 

mb/GeV2
𝑏, GeV-2 CL, %

546 1.93 ± 0.09 209 ± 15 15.8 ± 0.9 18.1

1800 2.0 ± 1.5 270 ± 24 16.2 ± 0.2 77.1

2760 1.600 ± 0.3 637 ± 252 28 ± 11 20.5

7000 (T) 1.95 ± 0.01 535 ± 30 20.5 ± 0.2 8.8

7000 (A) 1.97 ± 0.01 463 ± 13 19.8 ± 0.2 96.0

8000 (T1) 1.955 ± 0.005 566 ± 31 20.09 ± 0.08 43.86

8000 (T2) 1.90 ± 0.03 582 ± 33 20.9 ± 0.4 19.6

8000 (A) 1.97 ± 0.01 480 ± 11 19.9 ± 0.1 55.8

13000 (T1) 1.959 ± 0.006 677 ± 36 20.99 ± 0.08 76.5

13000 (T2) 1.958 ± 0.003 648 ± 10 21.06 ± 0.05 89.1

13000 (A) 1.968 ± 0.006 569 ± 17 20.84 ± 0.07 29.7

▪ fits to the existing pp and pതp  𝑑𝜎/𝑑𝑡 data 
in the kinematic range: 

▪ the CL values of the fits range between 
8.8% and 96%.

▪ statistical, systematic and normalization 
errors are taken into account using the 𝜒2 
definition developed by PHENIX Collab.

546 GeV ≤ s  ≤ 13 TeV

0.02 GeV2 ≤ −t ≤ 0.15 GeV2

A. Adare et al. (PHENIX Collab.) Phys. Rev. C 77, 064907
Values of the fitted parameters of the simple 

Lévy-α stable model at different energies
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 𝛼𝐿 = 2 versus 𝛼𝐿 < 2 results @ 13 TeV 
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Energy dependence of the 𝛼𝐿 parameter 

▪ the value of the 𝛼𝐿 parameter does not
depend on energy

▪ its value is 1.959 ± 0.002, i.e., slightly but
in a statistical sense significantly different
from 2

▪    → strong non-exponential behavior at
low −𝑡 in the differential cross section,

power law tail at high-𝑏 in ෤𝜎𝑖𝑛 𝑠, 𝑏

Energy dependence of the 𝜶𝑳 parameter of 
the simple Lévy-α stable model

Universe 2024, 10(3), 127
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Energy dependence of the optical point parameter

▪ the energy dependence of the 𝑎 
parameter is quadratically logarithmic:

▪ ATLAS and TOTEM data result slightly 
different energy dependencies

 
▪ reason: ATLAS and TOTEM use different

methods to obtain the absolute
normalization of the measurements

𝑎 𝑠 = 𝑝0 + 𝑝1 𝑙𝑛
𝑠

1 𝐺𝑒𝑉2
+ 𝑝2 𝑙𝑛2

𝑠

1 𝐺𝑒𝑉2

ATLAS Collab., Eur. Phys. J. C 83 (2023) 441
Energy dependence of the 𝒂 parameter of the 

simple Lévy-α stable model

Universe 2024, 10(3), 127
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Energy dependence of the slope parameter

▪ the energy dependence of the 𝑏
parameter for TOTEM and ATLAS data
together, and for pതp data alone are
linearly logarithmic:

▪ the LHC pp and the lower energy pതp data
do not lie on the same curve

▪ reason: the slope parameter data have a 
jump in the energy dependence around
3-4 GeV

Energey dependence of the 𝒃 parameter of 
the simple Lévy-α stable model

𝑏 𝑠 = 𝑝0 + 𝑝1 𝑙𝑛
𝑠

1 𝐺𝑒𝑉2

TOTEM Collab., Eur. Phys. J. C (2019) 79:103

Universe 2024, 10(3), 127



• parameters of the simple Levy α-stable model and the measurable quantities at 𝑡 → 0 can be 
approximately expressed in terms of the parameters of the LBB model 

• only leading order terms in ෤𝜎𝑖𝑛 𝑠, 𝑏  are considered; 𝐴𝑞𝑞 = 1 and λ = 1/2 are fixed

• according to the analysis of elastic pp and pതp data in the energy region 0.5 TeV ≤ s  ≤ 8 TeV 
only 𝛼𝑅 is different for pp and pതp scattering (T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021))

• in the low-|t| approximation, difference between pp and pതp scattering could be seen in the 
data on 𝐝𝝈/𝒅𝒕, 𝝆𝟎, 𝒂 (optical point), and 𝝈𝒆𝒍, no difference in the data on 𝝈𝒕𝒐𝒕 and 𝒃

𝜌0 𝑠 =
𝑅𝑒𝑡𝑒𝑙(𝑠, 𝑡 = 0)

𝐼𝑚𝑡𝑒𝑙(𝑠, 𝑡 = 0)
= 2α𝑅𝜎𝑡𝑜𝑡 𝑠 = 9𝜋 2𝑅𝑞

𝛼𝐿(𝑠)
(𝑠)

2/𝛼𝐿(𝑠)

𝑏(𝑠) =
1

36

4

3

Τ2 𝛼𝐿(𝑠)

2 + 2𝛼𝐿 𝑠 𝑅𝑞𝑑
𝛼𝐿 𝑠

(𝑠) + 3𝛼𝐿(𝑠) 2𝑅𝑑
𝛼𝐿 𝑠

(𝑠) + 𝑅𝑞
𝛼𝐿 𝑠

(𝑠)
Τ2 𝛼𝐿(𝑠)

 Simple Lévy α-stable & LBB model parameters

𝑑σ

𝑑𝑡
𝑠, 𝑡 = 0 =  𝑎(𝑠) =

81

16
𝜋 2𝑅𝑞

𝛼𝐿 𝑠
(𝑠)

Τ4 𝛼𝐿
1 + 4𝛼𝑅

2(𝑠)

(obtained after a Taylor expansion in 𝑡𝛼𝐿/2) 

𝜎𝑒𝑙 𝑠 =
𝑎 𝑠

𝑏 𝑠
Γ

2 + 𝛼𝐿 𝑠

𝛼𝐿 𝑠

25
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 Summary

• the formal Lévy α-stable generalization of the Bialas-Bzdak model is done, the    
𝛼𝐿 = 2 limit corresponds to the original model

• solution of difficult and complex technical (mathamatical and computational) 
problems is needed to fit the experimental data with the generalized model

• based on approximations a highly simplified Levy 𝛼-stable model of the pp (and 
pതp) differential cross section is deduced and successfully fitted to the data in the 
low-|t| region 

• the energy dependences of the parameters of the simple model are determined; 
the parameters of the simple model are related to the parameters of the              
Lévy α-stable generalized Real extended Bialas-Bzdak (LBB) model 

• final conclusion: the successful fit results indicate promising prospect for the
future utility of the LBB model in describing experimental data

26
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𝜌0 & 𝛼𝑅: connection between 𝑡 = 0 and 𝑡 ≠ 0 data 

• there is a connection between the 𝜌0 parameter and the 𝛼𝑅 parameter of the ReBB model
regulating the real part of the scattering amplitude and the minimum-maximum structure of 
the d𝜎/𝑑𝑡

• 𝛼𝑅 is determined by the d𝜎/𝑑𝑡 data at the minimum-maximum region but at the same time 
specifies the value of the 𝜌0 in the ReBB model

𝛼
𝑅

 

T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021)



Most general term in ෤𝜎𝑖𝑛 

𝜎𝑞𝑞 Ԧ𝑠𝑞, Ԧ𝑠𝑞
′; 𝑏 = 𝜋𝐴𝑞𝑞 2𝑅𝑞

𝛼 Τ2 𝛼
× 𝐿 𝑏 + Ԧ𝑠𝑞

′ − Ԧ𝑠𝑞|𝛼, ൗ2𝑅𝑞
𝛼 Τ1 𝛼

2

𝜎𝑞𝑑 Ԧ𝑠𝑞 , Ԧ𝑠𝑑
′; 𝑏 = 2𝜋𝐴𝑞𝑞 2𝑅𝑞

𝛼 Τ2 𝛼
× 𝐿 ቀ𝑏 + Ԧ𝑠𝑑

′ − Ԧ𝑠𝑞 𝛼, ൗ𝑅𝑞
𝛼 + 𝑅𝑑

𝛼 Τ1 𝛼
2

𝜎𝑑𝑞 Ԧ𝑠𝑑 , Ԧ𝑠𝑞
′; 𝑏 = 2𝜋𝐴𝑞𝑞 2𝑅𝑞

𝛼 Τ2 𝛼
× 𝐿 ቀ𝑏 + Ԧ𝑠𝑞

′ − Ԧ𝑠𝑑 𝛼, ൗ𝑅𝑞
𝛼 + 𝑅𝑑

𝛼 Τ1 𝛼
2

𝜎𝑑𝑑 Ԧ𝑠𝑑, Ԧ𝑠𝑑
′; 𝑏 = 4𝜋𝐴𝑞𝑞 2𝑅𝑞

𝛼 Τ2 𝛼
× 𝐿 𝑏 + Ԧ𝑠𝑑

′ − Ԧ𝑠𝑑|𝛼, Τ2𝑅𝑑
𝛼 Τ1 𝛼 2

෤𝜎𝑖𝑛
𝑞𝑞,𝑞𝑑,𝑑𝑞,𝑑𝑑

𝑏 = න𝑑2 𝑠𝑞𝑑2𝑠′𝑞𝐿 Ԧ𝑠𝑞 ቚ Τ𝑅𝑞𝑑∗ 2 𝐿 Ԧ𝑠𝑞
′ ቚ Τ𝑅𝑞𝑑∗ 2 × 𝜎𝑞𝑞 Ԧ𝑠𝑞 , Ԧ𝑠𝑞

′; 𝑏 𝜎𝑞𝑑 Ԧ𝑠𝑞 , −𝜆 Ԧ𝑠𝑞
′; 𝑏 𝜎𝑑𝑞 Ԧ𝑠𝑞

′, −𝜆 Ԧ𝑠𝑞; 𝑏 𝜎𝑑𝑑 −𝜆 Ԧ𝑠𝑞 , −𝜆 Ԧ𝑠𝑞
′; 𝑏



Energy dependences of the ReBB model parameters

𝑅𝑞 𝑠 = 𝑝0 + 𝑝1𝑙𝑛(𝑠) 𝑅𝑑 𝑠 = 𝑝0 + 𝑝1𝑙𝑛(𝑠)

The energy dependences of the scale parameters, 𝑅𝑞(𝑠), 𝑅𝑑(𝑠), and 𝑅𝑞𝑑 𝑠  are 

linear logarithmic and the same for pp and pതp processes! 

The energy dependence of the 𝛼 parameter, α(𝑠) is linear logarithmic too, but not 
the same for pp and pതp processes!
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T. Csörgő, I. Szanyi, Eur. Phys. J. C 81, 611 (2021) 

https://doi.org/10.1140/epjc/s10052-021-09381-5


Energy dependences of the ReBB model parameters

𝑅𝑞𝑑 𝑠 = 𝑝0 + 𝑝1𝑙𝑛(𝑠) 𝛼 𝑠 = 𝑝0 + 𝑝1𝑙𝑛(𝑠)

The energy dependences of the scale parameters, 𝑅𝑞(𝑠), 𝑅𝑑(𝑠), and 𝑅𝑞𝑑 𝑠  are 

linear logarithmic and the same for pp and pതp processes! 

The energy dependence of the 𝛼 parameter, α(𝑠) is linear logarithmic too, but not 
the same for pp and pതp processes!
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▪ i.e least squares fitting with:

▪ minimization with CERN Root MINUIT, parameter error estimation by MINOS. 

𝜒2 = ෍

𝑗=1

𝑀

෍

𝑖=1

𝑛𝑗
𝑑𝑖𝑗 + 𝜖𝑏𝑗 ෤𝜎𝑏𝑖𝑗 + 𝜖𝑐𝑗𝑑𝑖𝑗𝜎𝑐𝑗 − 𝑡ℎ𝑖𝑗

2

෤𝜎𝑖𝑗
2 + 𝜖𝑏𝑗

2 + 𝜖𝑐𝑗
2 +

𝑑𝜎𝑡𝑜𝑡
− 𝑡ℎ𝜎𝑡𝑜𝑡

𝛿𝜎𝑡𝑜𝑡

2

+
𝑑𝜌0

− 𝑡ℎ𝜌0

𝛿𝜌0

2

෤𝜎𝑖𝑗
2 = ෤𝜎𝑎𝑖𝑗

𝑑𝑖𝑗 + 𝜖𝑏𝑗 ෤𝜎𝑏𝑖𝑗 + 𝜖𝑐𝑗𝑑𝑖𝑗𝜎𝑐𝑗

𝑑𝑖𝑗

෤𝜎𝑘𝑖𝑗 = 𝜎𝑘𝑖𝑗
2 + (𝑑𝑖𝑗

′ 𝛿𝑘𝑡𝑖𝑗)2, 𝑘 ∈ {𝑎, 𝑏}
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Fit method

▪ least squares fitting with the method developed by the PHENIX collaboration

▪ this method is equivalent to the diagonalization of the covariance matrix if the
experimental errors are separated into three different types:

• type A: point-to-point varying uncorrelated statistical and systematic errors

• type B: point-to-point varying 100% correlated systematic errors

• type C: point-independent, overall systematic uncertainties
A. Adare et al. (PHENIX Collab.)
Phys. Rev. C 77, 064907



▪ the method takes into account (in 𝑀 separately measured 𝑡 ranges): 

• the 𝑡-dependent statistical (type 𝐴) and systematic (type 𝐵) errors (both vertical 
𝜎𝑘 and horizontal 𝛿𝑘𝑡) → 𝜖𝑏 parameters; 

• the 𝑡-independent 𝜎𝑐 normalization uncertainties (type 𝐶) → 𝜖𝑐 parameters;

• the measured total cross-section 𝑑𝜎𝑡𝑜𝑡
 and ratio 𝑑ρ0

 and their total uncertainties
𝛿𝜎𝑡𝑜𝑡 and 𝛿𝜌0.  

▪ minimization with CERN Root MINUIT, parameter error estimation by MINOS. 

A. Adare et al. (PHENIX Collab.)
Phys. Rev. C 77, 064907
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Fit method

▪ i.e least squares fitting with:
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Fit method

▪ i.e least squares fitting with:

𝝐𝒊-s must be considered as both measurements and fit parameters
not effecting the NDF (since they have known central value of zero and 

known standard deviation of one)



▪ the method takes into account (in 𝑀 separately measured 𝑡 ranges): 
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 and their total uncertainties
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Fit method

▪ i.e least squares fitting with:

The PHENIX method is validated by evaluating the χ2 from a full covariance matrix fit 
of the √s = 13 TeV TOTEM differential cross-section data using the Lévy expansion 

method from T. Csörgő, R. Pasechnik, & A. Ster, Eur. Phys. J. C 79, 62 (2019).



▪ the method takes into account (in 𝑀 separately measured 𝑡 ranges): 
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horizontal 𝛿𝑘𝑡) → 𝜖𝑏 parameters; 

• the 𝑡-independent 𝜎𝑐 normalization uncertainties → 𝜖𝑐 parameters;

• the measured total cross-section 𝑑𝜎𝑡𝑜𝑡
 and ratio 𝑑ρ0

 and their total uncertainties
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▪ minimization with CERN Root MINUIT, parameter error estimation by MINOS. 
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𝛿𝜎𝑡𝑜𝑡

2

+
𝑑𝜌0

− 𝑡ℎ𝜌0

𝛿𝜌0

2

෤𝜎𝑖𝑗
2 = ෤𝜎𝑎𝑖𝑗

𝑑𝑖𝑗 + 𝜖𝑏𝑗 ෤𝜎𝑏𝑖𝑗 + 𝜖𝑐𝑗𝑑𝑖𝑗𝜎𝑐𝑗

𝑑𝑖𝑗

෤𝜎𝑘𝑖𝑗 = 𝜎𝑘𝑖𝑗
2 + (𝑑𝑖𝑗

′ 𝛿𝑘𝑡𝑖𝑗)2, 𝑘 ∈ {𝑎, 𝑏}

5/13

Fit method

▪ i.e least squares fitting with:

The PHENIX method is validated by evaluating the χ2 from a full covariance matrix fit 
of the √s = 13 TeV TOTEM differential cross-section data using the Lévy expansion 

method from T. Csörgő, R. Pasechnik, & A. Ster, Eur. Phys. J. C 79, 62 (2019).

The PHENIX method and the fit with the full covariance matrix result in the same 
minimum within one standard deviation of the fit parameters.



Proportionality between 𝜌0 𝑠 and α(s)

𝑡𝑒𝑙(𝑠, 𝑏) = 𝑖 1 − 𝑒 )𝑖 𝛼 ෥𝜎𝑖𝑛(𝑠,𝑏 )1 − ෤𝜎𝑖𝑛(𝑠, 𝑏

𝛼 ෤𝜎𝑖𝑛 ≪ 1

Im 𝑡𝑒𝑙 𝑠, 𝑏 ≃ 𝜆 𝑠 exp −
𝑏2

)2𝑅2(𝑠

𝜌0(𝑠) = 𝛼(𝑠) 2 −
3

2
𝜆 𝑠 +

1

3
𝜆2 𝑠

The dependence of 𝝆𝟎/𝜶 on 𝝀 = 𝐈𝐦 𝒕𝒆𝒍 𝒔, 𝒃 = 𝟎  in the TeV
energy range. The data points are generated numerically by 

using the trends of the ReBB model scale parameters and the 
experimentally measured 𝝆-parameter values. 

𝜆(𝑠) = Im 𝑡𝑒𝑙 𝑠, 𝑏 = 0

→ by rescaling one can get additional 𝛼 
parameter values at energies where 𝜌0 is 
measured (and vice versa)
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▪ differential cross section:

▪ total, elastic and inelastic cross sections:

▪ ratio ρ0:

Measurable quantities

𝑑𝜎

𝑑𝑡
𝑠, 𝑡 =

1

4𝜋
𝑇 𝑠, 𝑡 2

𝜎𝑡𝑜𝑡 𝑠 = 2𝐼𝑚𝑇 𝑠, 𝑡 = 0

𝜌0 𝑠 = lim
𝑡→0

𝜌(𝑠, 𝑡) ≡
𝑅𝑒𝑇 𝑠, 𝑡 → 0

𝐼𝑚𝑇 𝑠, 𝑡 → 0

𝜎𝑒𝑙 𝑠 = න

−∞

0
𝑑𝜎(𝑠, 𝑡)

𝑑𝑡
𝑑𝑡 𝜎𝑖𝑛 𝑠 = 𝜎𝑡𝑜𝑡 𝑠 − 𝜎𝑒𝑙 𝑠

▪ slope of dσ/dt:

𝐵0 𝑠 = lim
𝑡→0

B s, t
39

B s, t =
d

dt
ln

𝑑𝜎

dt
(s, t)
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