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Stable Distributions

Consider the sum of n independent identically distributed (i.i.d.) random variables x;:
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https://edspace.american.edu/jpnolan/wp-
content/uploads/sites/1720/2020/09/Chap1.pdf

1.1 Definition of stable

An important property of normal or Gaussian random variables is that the sum of two of
them 1s itself a normal random variable. One consequence of this is that if X' is normal, then
for X; and X, independent copies of X and any positive constants a and b,

aXy +bXoLeX +d. (1.1)

for some positive ¢ and some d € R. (The symbol 2 mmeans equality in distribution, 1.e.
both expressions have the same probability law.) In words, equation (1.1) says that the
shape of X 1s preserved (up to scale and shift) under addition. This book is about the class
of distributions with this property.

Definition 1.1 A random variable X is stable or stable in the broad sense if for X and X»
independent copies of X and any positive constants « and b, (1.1) holds for some positive
¢ and some d € R. The random variable is strictly stable or stable in the narrow sense if
(1.1) holds with d = 0 for all choices of ¢ and b. A random variable 1s symmetric stable if

. : _— d
it is stable and symmetrically distributed around 0, e.g. X=—X.
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Stable Distributions (Lorentzian case)

* Formal proof (The Lorentzian and Gaussian distributions are stable.)

* For Lorentzian random variables, the probability density function is

o
P(x) =~
x) }Ij.‘z—l—_‘k’z

+o0 _ o
* The Fourier transform of the pdf: ¢(q) = P(x)e*dx ,thus| @(q) =e 1.

T :f.f

 The convolution theorem states that the Fourier transform of a convolution of
two functions is the product of the Fourier transforms of the two functions

F [_ﬂ.ﬂ@;;[x}} = F[f(x)]Z[2(x)] = F(q)G(q).
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Stable Distributions (Lorentzian case)

Fori.i.d. random variables: Sy = x1 + x.

The pdf P,(S,) of the sum of two i.i.d. random variables is given by the
convolution of the two pdfs of each random variable: |
P Py($2) = P(x1) Q) P (x2).

2

Implying the convolution theorem:  ¢2(¢9) = [¢(q)]

In the general case: Pu(Sp) = P(x1) R P(x2) ) -+ X Plxy).

Hence oalq) = [o(g)]".
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Stable Distributions (Lorentzian case)

* The importance of using the characteristic function comes into play here.

e For Lorentzian distribution:  ¢2(q) = ¢ 247,

i . . | :
* By performing the inverse Fourier transform: P(x) = 5 [ o(q)e " dy.
LT

u. _':L

) 1 1
i ° ] f— ! P[T —
We obtain the pdf: P,(S,) R ) 72 X2

e Hence a Lorentzian distribution is a stable distribution.
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Stable Distributions (Gaussian case)

* For Gaussian random variables, the pdf is

* The characteristic function is: () = o /a% _ E—:-'ff_. where  =42/2.

* Hence p2(g) =e
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Stable Distributions (Gaussian case)

* By performing the inverse Fourier transform, we obtain

| 3,
P-(S)) = ——¢X7/87,
2(d2) ,"831“;{

* Thus the Gaussian distribution i1s aiso a stapie aistribution. Writing

psy— L a0 wefind gy — 3o
J2n(y/20)

* We have verified that at least two stable stochastic processes exist: Lorentzian
and Gaussian. The characteristic functions of both processes have the same
functional form (4) = ¢ 79", where a=1 for the Lorentzian, and a=2 for the
Gaussian form.
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General Class of Stable Distributions

Levy [92] and Khintchine [80] solved the general problem of determining
the entire class of stable distributions. They found that the most general
form of a characteristic function of a stable process is

Cing — 7]q|* {1 — fﬁ%tan (%1)} [ #+ 1]
Ing(g) = 4 : (4.20)

g —7lq| {l + fﬁ%% In |q|} [0 = 1]

where 0 < o < 2. 7 1s a positive scale factor, i 1s any real number. and [ 1s
an asymmetry parameter ranging from —1 to 1.

Special cases: References:
[92] P. Lévy: Calcul des probabilités,

(Gauthier-Villars, Paris, 1925)
‘ [80] A. Ya. Khintchine and P. Lévy, Sur Les Loi Stables,
e =1, =0 (Lorentzian) C. T. Acad. Sci. Paris 202 (1936) 374-376

e o = 2 (Gaussian) .

e v =1/2, f =1 (Levy—Smirnov)
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Power-law behavior

* Henceforth we consider here only the symmetric stable distribution ( = 0)

* with a zero mean (1 = 0). The symmetric stable distribution of index a and scale
factory is,

1 = 2
Pi(x) = — / eVl cos(gx)dq.
T Jo

* we find the asymptotic approximation of a stable distribution of index a valid

for large values of | x|, (1 + o) sin(na/2)
Py(]x]) ~ ~

m| x|+ A
The asymptotic behavior for large values of x 1s a power-law behavior,
a property with deep consequences for the moments of the distribution.
Specifically, E{|x|"} diverges for n > o when o < 2.|In particular, all Levy
stable processes with o < 2 have infinite variance. Thus non-Gaussian stable
stochastic processes do not have a characteristic scale — the variance 1s
‘infinite! 9




The St. Petersburg paradox

The St. Petersburg game:

A casino offers a game of chance for a single player in which a fair coin is tossed
at each stage. The initial stake begins at 2 dollars and is doubled every time tails
appears. The first time heads appears, the game ends and the player wins
whatever is the current stake. How much would we pay to play this game?

Let's calculate the expected value: £ - % X2+ x4+ —é— x 8 + ]—1—5 x16 + ..

=] ®] # +

= o0

The bank would ask for its loss on this game - which is an infinitely large sum. But
there is no player who would pay more than $30 for it. The two parties cannot
come to an agreement. Why?

They are trying to determine a characteristic scale for a problem that has no characteristic scale.
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Price Change Statistics |.

Stable non-Gaussian distributions are of
interest because they obey limit theorems.
However, we should not expect to observe
price change distributions that are stable. The
reason is related to the hypotheses underlying
the limit theorem for stable distributions:

(i) pairwise-independent,

(ii) identically distributed.

Hypothesis (ii) is not generally verified by
empirical observation because, e.g., the
standard deviation of price changes is strongly
time-dependent. This is known in finance as
time-dependent volatility.
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Fig. 4.2. Monthly volatility of the S&P 500 index measured for the 13-year period

January 1984 to December 1996. Courtesy of P. Gopikrishnan.
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Price Change Statistics |l.

There is a more appropriate limit distribution
theorem, in which the xi v.v.'s are 70|
independent, but not necessarily of the same
distribution (it was first presented by Bawly
and Khintchine).

ok
[
T
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In the sum S, there is no single stochastic
variable x; that dominates the sum. The 10
Khintchine theorem states that it is necessary . e
. . . . . . . 84 85 'B6 '87 '88 '89 90 91 92 93 94 95 06
and sufficient that F_(S), the limit distribution time (year)
funCtion, be infinitEIV diViSible. Fig. 4.2. Monthly volatility of the S&P 500 index measured for the 13-year period

January 1984 to December 1996. Courtesy of P. Gopikrishnan.
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Infinitely divisible random processes

A random process y 1s infinitely divisible if, for every natural number k, it can
be represented as the sum of k i.i.d. random variables {x;}. The distribution
function F(y) 1s infinitely divisible if and only if the characteristic function
¢o(q) 1s, for every natural number k, the kth power of some characteristic
function ¢y (g). In formal terms

o(q) = [or(q)]". (4.33)

with the requirements (1) ¢ (0) = 1 and (11) ¢i(g) 1s continuous.

Example (Stable processes) Example (Poisson processes)
) | [ i1 62 Al P(m:A) = cﬂ_’J"{ﬂ""/mT',L~ with m =0.1.....n,
o(q) =exp |ing — "'qu] m) () (q) = exp i{f — zkffz *
B - i A i
plq) = expl[i(e? — 1)], mmm) ¢i(q) = exp |:E{E‘q — l}] :
. LI “
o(q) = explipg —y|q|*], ==—=) ¢\ (q) = exp % — —Iffl
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Classes of Random Processes

The class of infinitely divisible
random processes is a large class
that includes the class of stable
random processes.

They may have finite or infinite
variance.

Stable non-Gaussian random
processes have infinite variance.
The Gaussian process is the only

stable process with finite variance.
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Thank you for your attention!

* Definition of stable distributions
* Formal proof for Lorentzian and Gaussian cases
* Price Change Statistics

* Class of Random processes
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