

Contribution ID: **308**

Type: **Poster**

Wed-Af-Po.05-03: Enhanced Critical Current Densities via Co-doped RE214 Artificial Pinning Centers in FF-MOD Gd123 Films

Wednesday, 2 July 2025 14:30 (2 hours)

We have fabricated Gd123 thin films co-doped with several kinds of RE_2CuO_4 ($RE214: RE = Gd, Nd, Sm, Eu$) by the FF-MOD method and investigated their superconducting properties. We have already reported that the introduction of the superconductor $RE214$ ($T_c = 18.5$ K) as an artificial pinning center (APC) into $RE123$ thin films which improved the J_c -B properties for the first time [1]. In this study, we introduced multiple types of $RE214$ with different lattice constants into the base Gd123 material for finer $RE214$ crystals and attempted to further improve the J_c -B properties. As a result, with the same volume fraction of $RE214$ introduced, the J_c -B properties improved as the number of different types of $RE214$ co-doped increased, and all films showed better J_c -B performance compared to non-doped films. At 4.2 K and 6.9 T parallel to the c-axis of Gd123 thin films, the J_c was 0.782 MA/cm² with the addition of Sm214 and 0.877 MA/cm² with the addition of three types (Gd214, Nd214, Sm214), representing increases of 1.07 times and 1.19 times, respectively, compared to the non-doped film. TEM images also confirmed that the $RE214$ pins were oriented along the c-axis, and it is inferred that they are introduced in a plate-like manner within the ab-plane. Therefore, it is expected that applying a magnetic field perpendicular to the c-axis during magnetization measurements could result in even higher calculated J_c values.

Moving forward, further improvements in superconducting properties are expected by altering the combinations of RE in $RE214$, their doping ratios, and the sintering conditions.

References

[1] R.Ishii, O.Miura, "Achievement of high critical current densities by co-doping BaMO₃ ($M = Zr, Ce, Sn$) and Gd₂CuO₄ for FF-MOD GdBa₂Cu₃O_{7- σ} thin films", The Applied Superconductivity Conference2024, Utah(U.S.A), September 2024.

Author: TARUMIZU, Seiya (Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University)

Co-authors: Mr MIURA, Osuke (Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University); Mr ISHII, Ryota (Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University)

Presenter: TARUMIZU, Seiya (Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University)

Session Classification: Wed-Af-Po.05 - HTS Conductors II