

The Use of Temperature Sensors for Liquid Hydrogen Testing at NASA Glenn Research Center

Wesley L Johnson¹, Mark J Kubiak^{1,2}, Dustin J Dombrowski^{1,2}, Keith P Johnson¹, Erin M Tesny¹, and Eric R Carlberg¹ ¹Glenn Research Center, Cleveland OH 44135 ²HX5 Sierra, Cleveland OH 44135

NASA's Experience With LH₂

- NASA has been a major user of Liquid Hydrogen for the past 80 years.
- While many outside of the space sector only see the large storage / distribution system at KSC, there is a wide variety of activities going on that are even better suited for engaging with the liquid hydrogen push than at KSC.
- How can this be leveraged to help US Industry move forward in it's interest in hydrogen aviation?

Liquid-hydrogen fuel system for one engine of a B-57 flew successfully in 1957. Image from NASA SP-4404, "Liquid Hydrogen as a Propulsion Fuel, 1945-1959"

Liquid Hydrogen Technology Development

and Testing

Transportation Systems Vehicles

Low Temperature Materials Development and Characterization

Thermocouples

- NASA has extensive experience using thermocouples in cryogenic systems:
 - Best used for systems above 70 80 K.
 - Can perform end to end system calibration for temperatures below 70 K.
 - Best if used with some length of wire along sensor as close to isothermal as possible.
 - Generally, Type E is most common used has best sensitivity of thermocouple types at temperatures below ~ 100 K.
 - Published uncertainty ~ +/- 1.6 K + electronics. In practice, we frequently get better than that.
- Typically potted on using Stycast 2850 FT or attached via taping.
- Commonly available NIST standard curves make T/Cs cheap and easy to use.
 - Can buy 500 ft spool and spot welder to make yourself as opposed to buying pre-made thermocouples.

RTD, Silicon Diodes, and Cernox[®]

- NASA has extensive experience using silicon diodes from Scientific Instruments and Lakeshore as well as Cernox[®] sensors from Lakeshore.
 - Used as both temperature sensors and wet/dry sensors in cryogenic fluids.
 - Mounted externally to fluid tubes and internally with several different configurations
- Multiple different wiring schemes
 - 2 wire
 - 3 wire
 - 4 wire
- Require current excitation and measure:
 - Voltage for silicon diodes.
 - Resistance for Cernox[®]

Silicon Diodes and Cernox[®] as Wet/Dry Sensors

- NASA GRC discovered the ability to use diodes as a wet/dry sensor.
 - Dempsey and Fabik, "Using Silicon Diodes for Detecting the Liquid-Vapor Interface in Hydrogen", NASA TM-105541.
 - Metzger and Zimmerli (NASA GRC) determined that Cernox[®] had a 6 15 x larger response than the silicon diodes (lower values for CX-1080 with LN2).
 - Normally chip sensors are used for this implementation.
- Normally, a diode (or Cernox[®]) receives an excitation current or voltage:
 - Silicon Diodes: 10 μ A
 - Cernox[®]: <10 mV
- By increasing the voltage or current across the sensor, it causes the sensor to self-heat more.
 - In a liquid that self heating is easily removed through convection, the measured response does not change.
 - In a vapor the self heating causes the diode to respond as if the fluid is warmer and the voltage response changes.
 - Based on the response to self heating, logic can be applied to the DAQ to determine if the sensor is wet or dry.
 - This also requires thermal isolation from the temperature rake or any other thermal mass.
- On SHIIVER, cylinder ("can") style SI diodes were used and this did not work for a few reasons.
 - The "can" had more thermal mass than the normally used chip configurations and took longer to "overheat"
 - The sensors were more closely coupled to the perforated board (tied down with wire) to prevent damage during installation and filling of the tank.

Overpowering data with LH₂

Delta-V vs power dissipation

Credit Metzger and Zimmerli, NASA GRC

External Tank Attachments

- GRC uses Stycast 2850 FT for epoxying sensors in place.
 - The Stycast is thermally conductive, but not electrically conductive.
- Often use "band-aids" to hold sensor in place while epoxy is drying.

Temperature Sensors in Tank

- GRC often uses temperature sensors in the tank, exposed to liquid hydrogen.
 - Mounted on epoxy perforated board that allows sensor to "hang out" into the liquid that surrounds it.
 - Image below shows Si diode (SD style) mounted on perf-board.
 - Wires run through board and then out through 20 K certified connector (CeramTec, Douglas, or equivalent).
 - Teflon coated 26 AWG wires
 - 63/37 solder with resin core
- Sensors used to measure stratification within the liquid of a tank and not the metal they are mounted on.

Images of SHIIVER Diode Rake

Silicon Diodes in Flow

- There are multiple different ways to get a temperature sensor into an internal flow:
 - Probes available from multiple sources (or made in house).
 - GRC SMiRF internal diode transition.
 - GRC SHIIVER internal diode mounting.
- These mounting techniques would work with Cernox[®] or RTDs as well as Silicon Diodes.

SMiRF internal transition

- Developed by GRC for various testing activities there.
 - Uses two wire Ceramtec feedthrough and VCR gland to attach in a VCR tee.
 - Sensor may not be fully immersed in flow due to length of Ceramtec feedthrough.

SHIIVER Internal Transition

- Developed in conjunction with GRC instrumentation shop to support SHIVER testing.
- Similar to probes, but doesn't weld tip closed.
 - Epoxy used to isolate diodes from tube wall.
 - Tried just sealing tube off at top and bottom with potting compound. Had some leaks over time, eventually filled whole tube.
 - Uses tubing to support diodes against internal flow forces
- Use SI can type diodes
 - Single sensor in 1/8th inch tube
 - Dual sensors in 1/4 inch tube
 - Goes into piping via swage fitting

Temperature sensors (2x) in SHIIVER vent line.

SHIIVER TP: NASA TP 20205008233

Different Wire Measurement Options

- A standard diode/RTD/Cernox[®] requires excitation.
- The excitation wires can be used to measure response in a two wire system:
 - Depending on the wire length (i.e. resistance), this can lead to large offsets in readings.
 - Different types of wire (copper or phosphor bronze) can be used to adjust offsets.
- This is usually corrected for by measuring response with two separate wires, hence the four wire system.
- GRC does have experience wiring up to six diodes in series for excitation.
 - This is the three wire configuration
 - This also minimizes the number of current sources required if current sources are used separately from monitoring response.
 - If one diode is lost, then all diodes on that string are lost (not appropriate for measurement redundancy).
 - There may also be some accuracy losses with this method.

- An array of different temperature sensors can be used effectively in liquid hydrogen systems.
- Can measure hardware or fluid temperatures within a system.
- Experience developed at NASA GRC over the past 80+ years of liquid hydrogen system testing has been shared to help the general audience with their measurement needs.
 - This presentation is a cumulation of the developments and lessons learned and not solely of the authors or presenters.

Thank you for your Attention!