

Contribution ID: 232

Type: Poster

M1Po3B-03: Mechanical Properties of Stainless-Steel co-wind Tapes for REBCO magnets

Monday 19 May 2025 14:00 (2 hours)

REBCO high-temperature superconductor tapes offers remarkably high critical current density in high magnetic fields. It has been used successfully in ultra-high field superconducting magnets. To address the challenge of high mechanical stress in these magnets, co-winding REBCO tapes with insulated stainless-steel tapes has emerged as a promising technique to enhance their overall performance. In this paper, we present the mechanical properties of 316L stainless steel co-wind tapes of different tempers. In addition, we investigated the impact of heat treatment, a process simulating the curing of sol-gel insulation, on the mechanical properties of 316L stainless steel tapes. Quarter-hard (0.006") and half-hard (0.008") stainless steel tapes were subjected to heat treatment at 550°C for approximately one minute. Subsequent mechanical testing at 77 K revealed an increase of 6.5% in the modulus of elasticity for both tape thicknesses by heat treatment. Conversely, the yield strength decreased by 2%. These findings provide crucial insights into the mechanical behavior of heattreated stainless-steel tapes and their suitability for co-winding with HTS tapes in high-field superconducting magnets. By understanding the effects of heat treatment on the mechanical properties, we can optimize the design and performance of future superconducting systems.

Acknowledgement

This work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779, DMR-1839796, DMR- 2131790, and the State of Florida.

Authors: Dr INGROLE, Aniket (National High Magnetic Field Laboratory (NHMFL), Florida State University); LU, Jun

Presenter: Dr INGROLE, Aniket (National High Magnetic Field Laboratory (NHMFL), Florida State University)

Session Classification: M1Po3B - Mechanical and Thermal Properties of Materials at Low Temperature