

Formation of thermal conductive hydrogel network in boron nitride/polyvinyl alcohol by directional freezing assisted salting-out method for cryogenic application ID:343

Zhao Junting^{1,2}, Zhou Zhengrong^{1,3}, Wang Tao¹, Huang Rongjin^{1,2,*}, Zhang Hongwei¹, Miao Zhicong¹

- ² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China;
- ³ Hunan Key Laboratory of High-Performance Intelligent Sensor and Detection System, The 48th Research Institute of CETC, Changsha, China;

1. Introduction:

- Electronic components are developing in the directions of miniaturization, integration and flexibility.
- Due to good flexibility, hydrogel-based materials has attracted extensive attention.
- The hydrogel materials prepared by conventional methods have poor performance, especially in mechanical properties and thermal conductivity aspect.
- In this research, we adopted the method to prepare composite materials with high mechanical and thermal properties.

2. Methods:

• Preparation of BN/PVA composite hydrogel

PVA and BN were mixed in a certain proportion through water bath heating, poured into a mold for directional freezing, and then salting out was performed to obtain a hydrogel.

• Preparation of 3D-BN/epoxy composite

> Sintered hydrogels were used to obtain porous BN skeletons. The BN skeletons were immersed in the resin mixture, vacuum degassed and then cured to obtain BN/epoxy nanocomposites.

• Characterization

- > Scanning electron microscopy (SEM).
- ➤ UTM6503 electronic universal testing machine.
- CTM-60K model of the steady-state thermal conductivity tester.

3. Discussion:

- The thermal conductivity of PVA/BN composites range from 0.35–0.65 W/m·K at 300 K, 0.17-0.32 W/m·K at 77 K.
- The thermal conductivity of epoxy composites range from 0.35 to 0.83 W/m·K at 300 K, 0.15-0.38 W/m·K at 77 K.
- The tensile strength of hydrogel can reach 513.4 kPa, and the elongation at break can reach 426.53%.

4. Conclusion:

- The thermal conductivity of hydrogel composites increase by more than 260% compared with pure PVA hydrogels.
- The tensile strength of the hydrogel composite is in the range of 151.7-513.4 kPa, and the overall mechanical strength is good.
- The hydrogel sintered at high temperature can be used to prepare a 3D thermal conductivity network, and the thermal conductivity of the material prepared by impregnating it in epoxy resin can reach 0.83 W/m·K.