

Muon Performance Study

YONGWEN ZHENG KEVIN NELSON 6/27/24

The Detector and Alignment

- Inner detector
- Muon spectrometer muons travel much further than hadrons
- $^\circ\,$ Misalignment in ID and MS causes issue, but it can be measured through ρ'
 - $\rho' = \frac{P_T^{ID} P_T^{ME}}{P_T^{CB}}$ where ID is inner detector, ME is muon extrapolated to the inner detector, and CB is combined muons.
 - Better alignment -> less mismatch between ID and ME P_T -> smaller ρ .

Part 1 – 2024 Alignment

BEE Side A

Data23 Z $\mu\mu$ Stream

Kevin showed this at muon week, studying P_T imbalance with latest updates to alignment conditions, which are now deployed at tier0

Data 24 Study (Main Stream)

	Old Alignment	New Alignment
Tag	<= f1456	>= f1462
Run No.	<= 00474271	>= 00474441
Condition tag	CONDBR2-BLKPA-2024-02	CONDBR2_BLKPA_2024_03
Run Selected	data24_13p6TeV.00 473968 .physic s_Main.deriv.DAOD_PHYS. f1450 _ m2248_p6142_tid38351515_00	data24_13p6TeV.00 474572 .physics _Main.deriv.DAOD_PHYS. f1462 _m 2248_p6142

Cuts Applied:

CB, Loose

BEE 1.44 < $|\eta|$ < 1.682 $|\varphi|$ in (0.301, 0.478), (1.086, 1.263), (1.872, 2.049), (2.657, 2.834) **BIS78** 1.05 < $|\eta|$ < 1.3 $|\varphi|$ in (0.21, 0.57), (1, 1.33), (1.78, 2.14), (2.57, 2.93)

P_T < 20, (20, 100), and >100

BEE Side A

Improvement for $20 < P_T < 100$ GeV. Not much improvement for $P_T < 20$ GeV due to lower P_T^{ME} dependence. Not enough data for $P_T > 100$ GeV

BEE Side C

Similar changes as BEE side A

BIS78 Side A

Small improvement in $20 < P_T < 100$ GeV. Not enough data for $P_T > 100$ GeV still but seems to have improvement.

BIS78 Side C

Little change

Comparison

Part 2 – Tight WP Optimization

Muon Efficiency

- There is a gap at |η| < 0.1 in the muon spectrometer for the wires
- In this region, we can only reconstruct muons using the inner detector, which greatly reduces muon efficiency

Muon Working Point

- Efficiency for prompt muons drop (especially tight WP), and even worse, fake muons (light flavor) increase
- It has been the goal for the past 16 years to increase the efficiency of this region.
- We want better signal efficiency or lower background.

Optimizing Tight WP - ho and q/p signif

Tight WP definitions:

- CB, precision layers > 1, medium WP, reduced \mathcal{X}^2 < 8,
- 2D cut on ρ and q/p signif with discrete P_T bins such that prompt muon efficiency is above $0.96/(1 + e^{-0.35*(P_T+4)})$ while maximizing background rejection
 - The study uses discrete P_T intervals so the optimized ρ and q/p signif cuts are applicable to other processes with different P_T distribution
 - We focus on light flavor decay rejection because these are not muons from heavy particles or high energy process of interest. Therefore, light flavor ρ distribution is a lot different from prompt (t) and nonprompt (τ and b, c jets).

Motivation:

 Working on ρ and q/p signif cuts because this study was last done with 2016 data. Pileup and the detector has changed significant since then.

From WP internal note

Previous ρ and q/p Cut Study

- Previous study performed the 2D cut on p and q/p signif in the low P_T region, and p cut only in medium and high P_T.
- After the 2D cut in the low *P_T* region, the *ρ* and q/p signif cut were plotted individually, though dependent of each other. On the right is the low *P_T ρ* cut map.
- The x axis is P_T , and the y axis is η . The shades identify the ρ cut resulting in ~96% of prompt muon signals in each P_T , η region.

2016 low_pt |p| cut map

Method

- Dataset used: MC23d ttbar dilepton
 - mc23_13p6TeV.601230.PhPy8EG_A14_ttbar_hdamp258p75_dil.recon.AOD.e8514_s4159_r15224
- We are starting on 1D ρ and q/p signif cuts resulting in 96% signal efficiency without considering background rejection.
- Prompt muons identified through the muonTruthIFFType variable
- Nonprompt is from τ and b, c jets. Fakes are from light flavor (e.g. pion).
- We generated a 3D histogram of P_T , η , ρ
 - For each P_T , η bin, I integrated ρ and stored the ρ position resulted in 96% prompt muons in the bin

Low P_T - ρ Map

• Got similar results as the 2016 study

Low P_T - q/p significance Map

- There isn't a difference in $|\eta| < 0.1$ compared with $|\eta| > 0.1$ in the 2024 study, in contrast with the 2016 study.
- We observe pattern across P_T regions. Highest q/p signif cut in the 10 16 GeV region.
- We also observe difference between $|\eta| < 1.3$ and $|\eta| > 1.3$.

ρ and q/p significance with η , P_T cut

Medium P_T - ρ Map

- The ρ cuts in the 1.1 < $|\eta|$ < 1.3 region are lower compared with the 2016 study due to a new chamber.
- The cuts at region |η| < 0.1 is also lower compared with the 2016 study. However, compared with |η| > 0.1 region, the ρ cut is significantly higher in both studies.

High P_T - ρ Map

- Smaller P_T binning is used for high P_T .
- The old plots used -1 for underflowing bins. For these values in the ratio plot, $|\eta|$ is set to 1.
- In the region $1.1 < |\eta| < 1.3$, the ρ cuts are also lower compared with the 2016 plot.

Next Steps

- Compare the efficiency of the 2024 1D ρ and q/p signif cut with the 2016 cuts.
- If necessary, complete 2D optimization for low pt regime.
- Validate and release WP recommendations using mcp-pipeline code (Developed by Kevin).

ETH main building

Kunsthaus Zürich