Parameter options for the RCS chain in SPS and LHC

F. Batsch, L. Thiele, S. Albright, D. Amorim, R. Calaga, H. Damerau, A. Grudiev, I. Karpov,...

HEMAC meeting #26 16/07/2024

RCS chain options for CERN-based scenarios

Start points:

- SPS with 6912m circumference, LHC with 26659m
- Kept the magnet strengths of 1.8T and 10T
- Filling factors match those of the real tunnels
- Optimization tool minimizes the four linear gradients times length
- The energy reach of RCS 4 is to be maximized (for the <u>optimization tool</u>, see appendix)

Possible scenarios:

- 3 RCS: 1x normal conducting in SPS tunnel, 2x (NC + hybrid) in LHC tunnel
- 3 RCS: 2x (NC + hybrid) in SPS tunnel, 1x hybrid in LHC tunnel
- 2 RCS: NC in SPS tunnel and hybrid in LHC tunnel

Common case: the normal conducting SPS

This RCS is common in all three scenarios:

- \rightarrow The ejection energy is set by the maximum reach defined by B_{nc}
- \rightarrow 400 GeV ejection energy

	Parameter	Symbol	Unit	RCS 1
	RCS type	_	[-]	Normal
	Injection energy	$E_{\rm inj}$	[eV]	63.000G
	Ejection energy	$E_{ m ej}$	[eV]	400.000G
	Energy ratio	$E_{ m ej}/E_{ m inj}$	[-]	6.349
	Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597.261
1	Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3.787k
	Survival rate	$N_{ m ej}/N_{ m inj}$	[-]	0.90
	Acceleration time	$ au_{\rm acc}$	[s]	399.748u
	Average accel. gradient	$G_{ m avg}$	[V/m]	2.814M
	Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3.793k
	Machine radius	R	[m]	1.100k
	Circumference	$2\pi R$	[m]	6.910k
	Pack fraction	-	[-]	0.67
	Bend radius	$ ho_B$	[m]	741.440
	Total NC dipole length	$L_{ m NC}$	[m]	4.659k
	Total SC dipole length	$L_{ m SC}$	[m]	0.000
	SC dipole field	$B_{ m SC}$	[T]	10.000
	Average injection dipole field	$B_{ m inj}$	[T]	283.900m
	Average ejection dipole field	$B_{ m ej}$	[T]	1.800
	Injection NC dipole field	$B_{ m NC,inj}$	[T]	283.900m
	Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.800
Exam	Number of RF cavities	n_{RF}	[-]	883
warnple Valu	Example table	created wi	th D. Amo	rim's <u>online tool</u>

Scenario 2xSPS, 1x LHC

Parameter	Symbol	Unit	RCS SPS 1	RCS SPS 2	RCS LHC
Injection energy	$E_{ m inj}$	[GeV]	63	394	936
Ejection energy	E_{ei}	[GeV]	394	936	3950
Energy ratio	$E_{ m ej}/\check{E}_{ m inj}$	[-]	6.3	2.4	4.2
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3730	8864
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3730	8864	37362
Survival rate	$N_{\rm ej}/N_{\rm inj}$	[-]	0.88	0.87	0.92
Acceleration time	$ au_{ m acc}$	[ms]	0.48	1.89	3.54
Number of turns	$N_{ m turns}$	[-]	21	79	41
Average accel. gradient	G_{avg}	[MV/m]	2.32	0.96	2.84
Energy gain per turn	ΔE	[GeV]	15.8	6.87	73.4
Total RF voltage	$V_{ m RF}$	[GV]	22.3	9.7	103.8
Number of cavities	N_{cav}	-	740	294	2308
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3170	1907	1017
Machine radius	R	[m]	1100	1100	4243
Pack fraction	-	[-]	0.66	0.66	0.85
Bend radius	$ ho_B$	[m]	730	724	3604
Total straight length	$L_{ m str}$	m	2323	2359	4015
Total NC dipole length	$L_{ m NC}$	[m]	4589	3158	17529
Total SC dipole length	$L_{\rm SC}$	[m]	-	1394	5118
SC dipole field	$B_{\rm SC}$	[T]	-	10	10
Average Injection dipole field	$B_{ m inj}$	[T]	0.29	1.80	0.87
Average ejection dipole field	B_{ei}	[T]	1.80	4.31	3.65
Injection NC dipole field	$B_{\rm NC,inj}$	[T]	0.29	-1.80	-1.80
Ejection NC dipole field	$B_{\rm NC,ej}$	[T]	1.80	1.80	1.80

Table 5: General properties of: 2xSPS (normal + hybrid), 1x LHC hybrid

→ RF not yet optimized as *Bref* for RCS1 is

not determined

Scenario 1xSPS, 2x LHC

Mulnternat UON Col Collabora

Table 1: General propertie	es of: Txor	5, 2x LHC	(10111a1 + 1)	iybria)		
Parameter	\mathbf{Symbol}	Unit	RCS SPS	RCS LHC 1	RCS LHC 2	
Injection energy	$E_{ m inj}$	[GeV]	63	386	1943	•
Ejection energy	$E_{ m ej}$	[GeV]	386	1943	4648	=> 9 TeV collider
Energy ratio	$E_{ m ej}/\check{E}_{ m inj}$	[-]	6.1	5.0	2.3	
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3653	18387	
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3653	18387	43993	
Survival rate	$N_{\rm ej}/N_{\rm inj}$	[-]	0.88	0.90	0.92	
Acceleration time	$ au_{ m acc}$	[ms]	0.46	2.17	5.70	
Number of turns	-	[-]	20	24	64	
Average accel. gradient	G_{avg}	[MV/m]	2.36	2.39	1.58	
Energy gain per turn	ΔE	[GeV]	16.1	64.9	42.3	
Total RF voltage	$V_{ m RF}$	[GV]	22.8	91.8	59.8	Largo number of
Number of cavities	$N_{ m cav}$	[-]	760	3060	1870	
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3290	664	632	cavities
Machine radius	R	[m]	1100	4243	4243	
Pack fraction	-	[-]	0.65	0.85	0.85	
Bend radius	$ ho_B$	[m]	715	3600	3600	
Total straight length	$L_{ m str}$	[m]	2418	4040	4004	
Total NC dipole length	$L_{ m NC}$	[m]	4494	22621	15750	
Total SC dipole length	$L_{ m SC}$	[m]	-	-	6907	
SC dipole field	$B_{ m SC}$	[T]	-	-	10	
Average Injection dipole field	$B_{ m inj}$	[T]	0.29	0.36	1.80	Note: Using 161
Average ejection dipole field	$B_{ m ej}$	[T]	1.80	1.80	4.30	would allow to
Injection NC dipole field	$B_{ m NC,inj}$	[T]	0.29	0.36	-1.80	reach 5 TeV
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	1.80	
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	1.80	

Table 1: Conoral properties of $1\times$ SPS $2\times$ LHC (normal \pm hybrid)

Scenario 1xSPS, 1x LHC

Table 7: General properties of the RCS chain: 1 SPS, 1 LHC						
Parameter	Symbol	Unit	RCS SPS	RCS LHC		
Injection energy	$E_{\rm ini}$	[GeV]	63	397		
Ejection energy	$E_{\rm ej}$	[GeV]	397	3580		
Energy ratio	$E_{\rm ej}/E_{\rm inj}$	[-]	6.3	9.0		
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3756		
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3756	33824		
Survival rate	$N_{ m ej}/N_{ m inj}$	[-]	0.91	0.80		
Acceleration time	$ au_{ m acc}$	[ms]	0.36	6.7		
Number of turns	$N_{ m turns}$	[-]	16	75		
Average accel. gradient	G_{avg}	[MV/m]	3.07	1.58		
Energy gain per turn	ΔE	[GeV]	20.9	42.4		
Total RF voltage	$V_{ m RF}$	[GV]	29.5	59.9		
Number of cavities	$N_{\rm cavities}$	[-]	980	1865		
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	4176	537		
Machine radius	R	[m]	1100	4243		
Pack fraction	-	[-]	0.67	0.85		
Bend radius	$ ho_B$	[m]	735	3600		
Total straight length	$L_{ m str}$	[m]	2291	4001		
Total NC dipole length	$L_{ m NC}$	[m]	4621	18495		
Total SC dipole length	$L_{ m SC}$	[m]	-	4161		
SC dipole field	$B_{ m SC}$	[T]	-	10		
Average Injection dipole field	$B_{ m inj}$	[T]	0.29	0.37		
Average ejection dipole field	$B_{ m ej}$	[T]	1.80	3.31		
Injection NC dipole field	$B_{ m NC,inj}$	[T]	0.29	-1.80		
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80		

=> 7 TeV collider

Much less cavities

1 RCS per tunnel optimal at CERN!

Energy swings in hybrid RCS

What is the difference to the green field (GF) study???

The energy swing of a second hybrid RCS is given by

 $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2*\pi*\rho_{b,1}} \text{ for the case of NC RCS as pre-injector}$ with $L_{sc,2} + L_{nc,2} = 2*\pi*\rho_{b,2}$ and by $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2*\pi*735} = 9.0$ $\frac{E_{ej}}{E_{inj}} = \frac{\frac{B_{sc}}{E_{sc,2}} + L_{sc,2} + L_{nc,2}}{2}$ for a hybrid RCS as pre-injector

Conclusion

In summery

Scenario	# RCS	Final Energy [TeV]	V _{RF} [V]	N _{cav}	Survival rate
2x SPS, 1x LHC	3	3.95	135.8	3342	0.7
1x SPS, 2x LHC	3	4.65	174.4	5690	0.7
1x SPS, 1x LHC	2	3.58	89.4	2845	0.7

- The fine-tuned RF optimization will be done for the selected scenario
- Real cost analysis requires a defined magnetic ramp of RCS1
- The CERN complex has a beneficial machine radius ratio such that 1 RCS per ring is optimal and large energy swings are also possible in hybrid RCSs

Scenario 1xSPS, 2x LHC for 16T SC magnets

Table 3: General properties of: $1xSPS$, $2x$ LHC (normal + hybrid)					
\mathbf{Symbol}	Unit	RCS SPS	RCS LHC 1	RCS LHC 2	
$E_{\rm inj}$	[GeV]	63	383	1945	
E_{ej}	[GeV]	383	1945	5046	= 10 TeV collider
$E_{ m ej}/E_{ m inj}$	[-]	6.1	5.1	2.6	
$\gamma_{ m inj}$	[-]	597	3627	18410	
$\gamma_{ m ej}$	[-]	3627	18410	47757	
$N_{ m ej}/N_{ m inj}$	[-]	0.94	0.87	0.90	
$ au_{ m acc}$	[ms]	0.246	2.83	7.40	
-	[-]	11	32	83	
G_{avg}	[MV/m]	4.3	1.8	1.4	
ΔE	[GeV]	29.3	48.7	32.6	
$V_{ m RF}$	[GV]	41.1	69.0	46	
$N_{ m cav}$	[-]	1370	2300	1023	Limit to be applied
$\dot{B}_{ m NC}$	[T/s]	6112	511	486	
R	[m]	1100	4243	4243	
-	[-]	0.65	0.85	0.85	
$ ho_B$	[m]	710	3605	3602	
$L_{ m str}$	[m]	2418	4040	6605	Length does not fit 8*540m
$L_{ m NC}$	[m]	4462	22649	18052	
$L_{ m SC}$	[m]	-	-	4579	
$B_{ m SC}$	[T]	-	-	16	
$B_{ m inj}$	[T]	0.30	0.35	1.80	
$B_{ m ej}$	[T]	1.80	1.80	4.67	
$B_{ m NC,inj}$	[T]	0.30	0.35	-1.80	
$B_{ m NC,ej}$	[T]	1.80	1.80	1.80	
	es of: 1xSP Symbol E_{inj} E_{ej} E_{ej}/E_{inj} γ_{inj} γ_{ej} N_{ej}/N_{inj} τ_{acc} - G_{avg} ΔE V_{RF} N_{cav} \dot{B}_{NC} R - ρ_B L_{str} L_{NC} L_{SC} B_{SC} B_{inj} $B_{NC,inj}$ $B_{NC,ej}$	es of: 1xSPS, 2x LHC Symbol Unit E_{inj} [GeV] E_{ej}/E_{inj} [-] γ_{inj} [-] γ_{ej} [-] N_{ej}/N_{inj} [-] τ_{acc} [ms] - [-] G_{avg} [MV/m] ΔE [GeV] V_{RF} [GV] N_{cav} [-] \dot{B}_{NC} [T/s] R [m] - [-] ρ_B [m] L_{str} [m] L_{str} [m] L_{SC} [m] B_{SC} [T] B_{inj} [T] $B_{NC,inj}$ [T] $B_{NC,inj}$ [T]	es of: 1xSPS, 2x LHC (normal + 1) Symbol Unit RCS SPS E_{inj} [GeV] 63 E_{ej} [GeV] 383 E_{ej}/E_{inj} [-] 6.1 γ_{inj} [-] 597 γ_{ej} [-] 3627 N_{ej}/N_{inj} [-] 0.94 τ_{acc} [ms] 0.246 - [-] 11 G_{avg} [MV/m] 4.3 ΔE [GeV] 29.3 V_{RF} [GV] 41.1 N_{cav} [-] 1370 \dot{B}_{NC} [T/s] 6112 R [m] 1100 - [-] 0.65 ρ_B [m] 710 L_{str} [m] 2418 L_{NC} [m] - B_{SC} [T] - B_{inj} [T] 0.30 B_{ej} [T] 1.80 $B_{NC,ej}$ <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>es of: 1xSPS, 2x LHC (normal + hybrid) Symbol Unit RCS SPS RCS LHC 1 RCS LHC 2 E_{ej} [GeV] 63 383 1945 5046 E_{ej} [GeV] 383 1945 5046 E_{ej}/E_{inj} [-] 6.1 5.1 2.6 γ_{inj} [-] 597 3627 18410 γ_{ej} [-] 3627 18410 47757 N_{ej}/N_{inj} [-] 0.94 0.87 0.90 τ_{acc} [ms] 0.246 2.83 7.40 - [-] 11 32 83 G_{avg} [MV/m] 4.3 1.8 1.4 ΔE [GeV] 29.3 48.7 32.6 V_{RF} [GV] 41.1 69.0 46 N_{cav} [-] 1370 2300 1023 \dot{B}_{NC} [T/s] 6112 511 486 R [m] 71</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	es of: 1xSPS, 2x LHC (normal + hybrid) Symbol Unit RCS SPS RCS LHC 1 RCS LHC 2 E_{ej} [GeV] 63 383 1945 5046 E_{ej} [GeV] 383 1945 5046 E_{ej}/E_{inj} [-] 6.1 5.1 2.6 γ_{inj} [-] 597 3627 18410 γ_{ej} [-] 3627 18410 47757 N_{ej}/N_{inj} [-] 0.94 0.87 0.90 τ_{acc} [ms] 0.246 2.83 7.40 - [-] 11 32 83 G_{avg} [MV/m] 4.3 1.8 1.4 ΔE [GeV] 29.3 48.7 32.6 V_{RF} [GV] 41.1 69.0 46 N_{cav} [-] 1370 2300 1023 \dot{B}_{NC} [T/s] 6112 511 486 R [m] 71

Minternational MUON Collider

Scenario 1xSPS, 1x LHC, 16T

Table 9: General properties	s for 1 SPS	, 1 LHC wi	th $16T SC r$	nagnets	_
Parameter	\mathbf{Symbol}	Unit	RCS SPS	RCS LHC	_
Injection energy	$E_{ m inj}$	[GeV]	63	397	-
Ejection energy	$E_{\rm ej}$	[GeV]	397	3815	= 7.5 TeV collider
Energy ratio	$E_{ m ej}/E_{ m inj}$	[-]	6.3	9.6	
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3757	
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3757	36108	
Survival rate	$N_{ m ej}/N_{ m inj}$	[-]	0.89	0.80	
Acceleration time	$ au_{ m acc}$	[ms]	0.44	7.01	
Number of turns	N_{turns}	[-]	16	75	
Average accel. gradient	G_{avg}	[MV/m]	2.51	1.63	
Energy gain per turn	ΔE	[GeV]	20.9	42.4	
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3407	513	
Machine radius	R	[m]	1100	4243	
Circumference	$2\pi R$	[m]	6912	26659	
Pack fraction	-	[-]	0.67	0.85	
Bend radius	$ ho_B$	[m]	736	3606	
Total NC dipole length	$L_{ m NC}$	[m]	4622	19.889	
Total SC dipole length	$L_{\rm SC}$	[m]	0	2.759	
SC dipole field	$B_{ m SC}$	[T]	-	16	
Average Injection dipole field	B_{inj}	[T]	0.29	0.37	
Average ejection dipole field	$B_{ m ej}$	[T]	1.81	3.53	
Injection NC dipole field	$B_{ m NC,inj}$	[T]	0.29	-1.80	
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	

Greenfield scenario with 1 RCS per tunnel

_

Table 10: General properties of the RCS chain							
Parameter	\mathbf{Symbol}	Unit	$\mathbf{RCS} \ 1$	RCS 2	RCS 3		
Injection energy	$E_{ m inj}$	[GeV]	63	333	1232		
Ejection energy	$E_{\mathbf{ej}}$	[GeV]	333	1.232	4219		
Energy ratio	$E_{\rm ej}/E_{\rm inj}$	[-]	5.3	3.7	3.4		
Injection Lorentz factor	$\gamma_{ m inj}$	[-]	597	3149	11663		
Ejection Lorentz factor	$\gamma_{ m ej}$	[-]	3149	11663	39928		
Survival rate	$N_{\rm ej}/N_{\rm inj}$	[-]	0.89	0.80	0.94		
Acceleration time	$ au_{ m acc}$	[ms]	0.41	3.12	3.14		
Average accel. gradient	G_{avg}	[MV/m]	2.21	0.96	3.17		
Ramp rate	$\dot{B}_{ m NC}$	[T/s]	3582	1153	1146		
Circumference	$2\pi R$	[m]	5990	10700	35000		
Pack fraction	-	[-]	0.65	0.64	0.66		
Bend radius	$ ho_B$	[m]	617	1095	3676		
Total NC dipole length	$L_{ m NC}$	[m]	3874	5237	17386		
Total SC dipole length	$L_{\rm SC}$	[m]	0	1640	5712		
SC dipole field	$B_{\rm SC}$	[T]	-	10	10		
Average Injection dipole field	$B_{ m inj}$	[T]	0.34	1.01	1.12		
Average ejection dipole field	$B_{\rm ej}$	[T]	1.80	3.76	3.83		
Injection NC dipole field	$B_{\rm NC,inj}$	[T]	0.34	-1.80	-1.80		
Ejection NC dipole field	$B_{ m NC,ej}$	[T]	1.80	1.80	1.80		

Parameter optimization using David's python script

• Use this as input for the optimization tool by David Amorim, Leonard Thiele, Marco Gast, ...

	Example of an	optimization: tr	y to fit the RCS in the CERN tunnels
--	---------------	------------------	--------------------------------------

7 variables

- the four transmission rates in RCS 1/2/3/4
- the three energy stages between RCS 1-2, RCS 2-3 and RCS 3-4

5 objectives

- the four linear gradients required in each RCS for acceleration (attribute linear_acceleration_gradient_for_survival of RCS objects, multiplied by the RCS length), to be minimized
- the energy reach of RCS 4, to be maximized

Inequality constraint

- the planned_global_survival_rate of the RCSChain, must be above 0.9^4 = 0.656
- the three dipole packing_fraction of each RCS, must be below 0.66 or 0.7 for RCS4
- acceleration time in the RCS must be below 10 ms

Other assumptions

- All other parameters are the default ones
- RCS 1 injection energy is 63 GeV

向个し **告** 무

Parameter optimization using David's python script

• Use this as input for the optimization tool by David Amorim, Leonard Thiele, Marco Gast, ...

```
# The default RCS chain parameters are recalled here
cern rcs_chain_before_optimization_parameters = {'Information': {'Name': 'hybrid RCS chain default', 'version': '1',
                                                         'Date': '2024-01-08',
                                                         'Comment': ''}.
                              'Parameters': {'Particle Name': 'PosMuon',
                                              'Number of stages': 3,
                                              'Stage type': ['Normal', 'Normal', 'Hybrid'],
                                              'Survival rate per stage': [0.9, 0.9, 0.9],
                                              'Energy stages [eV]': [63.0e9, 400e9, 1500.0e9, 4600.0e9],
                                              'Tunnel number': [0, 1, 1],
                                              'Tunnel lengths [m]': [6912, 26659],
                                              'Maximum B field Normal Conducting [T]': [1.8, 1.8,
                                                                                        1.8], # This was increased to 2 T
                                              'Maximum B field Super Conducting [T]': [10, 10, 10],
                                              'Initial number of particles': 2.7e12,
                                              'Maximum B field gradient compared to linear acceleration': [1.05, 1.05,
                                                                                                           1.05],
                                              'Total running hours [h]': 6000 * 20,
                                              'Cost per MWh [U]': 90,
                                              'Compute Bref and RF': [False, False, False], # We deactivate the Bref
                                                                                           # and RF computations for the
                                                                                           # optimization routines to work
                                              'Repetition rate [Hz]':5,
```

