

Federal Ministry of Education and Research

Status of RF parameters in RLA2

Leonard Thiele (University of Rostock, CERN), Fabian Batsch A. Aksoy, D. Amorim, R. Calaga, H. Damerau, M. Gast, A. Grudiev, I. Karpov, U. van Rienen

European Union (EU). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for the

Assumptions for RLA2

μ-

μ-

28.0 GeV

51.0 GeV

16.5 GeV

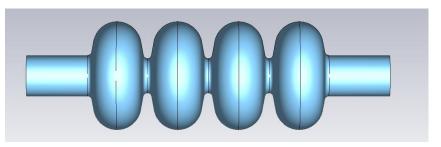
μ+

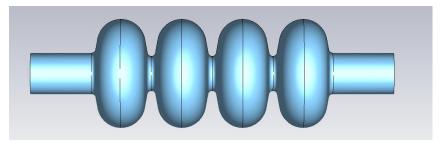
μ+

Parameter	Unit	Value
Number of LINAC passes	[-]	5
Energy gain per pass	[GeV]	11.5
Energy loss from linearizers per pass	[GeV]	1.4
LINAC length	[m]	1600
Cavity frequencies	[MHz]	352, 1056
Arc lengths	[m]	426, 560, 709, 710?
Acceleration time	[µs]	34
Number of 352 MHz accelerating cavities	[-]	512
Number of 1056 MHz linearizer cavities	[-]	98
Cavity gradients	[MV/m]	15 @ 352 MHz 24 @ 1056 MHz

CERN

All accelerator data was taken from Avni's talk at the 24th HEMAC meeting: <u>https://indico.cern.ch/event/1382603/</u>


Cavity parameters for LEP2 cavity


Parameter	Unit	Value
Operating Frequency	[MHz]	352
Longitudinal R/Q	[Ω]	232
Active length	[m]	1.7
Operational gradient	[MV/m]	6
E_pk/E_acc	[1]	2.3

Parameter	Unit	Value
Operating Frequency	[MHz]	1056
Longitudinal R/Q	[Ω]	232
Active length	[m]	0.56
Operational gradient	[MV/m]	-
E_pk/E_acc	[1]	2.3

LEP2 SC cavity (352 MHz)

Scaled LEP2 SC cavity (1056 MHz)

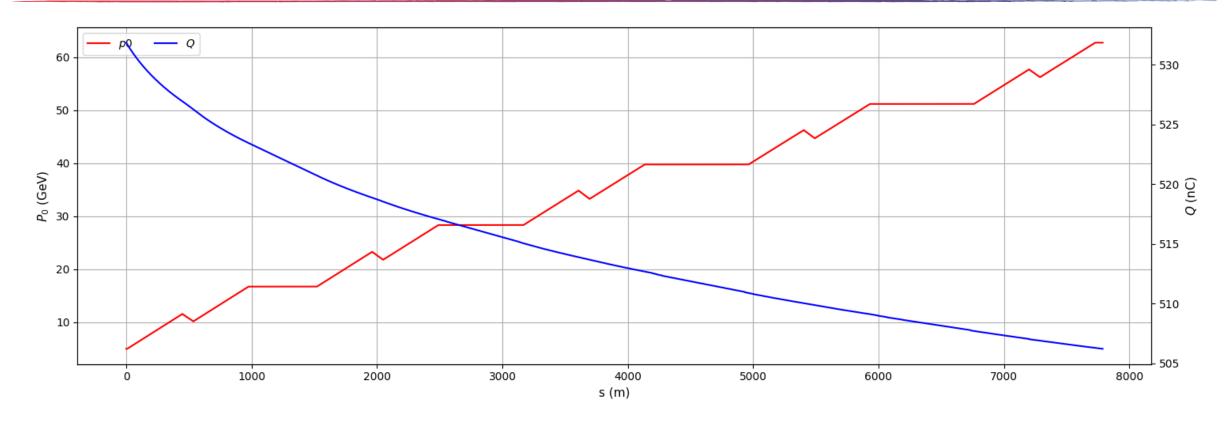
Parameter	Unit	RLA2 acceleration	RLA2 linearizer
Repetition frequency	[Hz]	5	
Total length	[m]	1040	00
Bunch population at injection	[1 x 10 ¹²]	3.32	2
Acceleration time	[µs]	34	
Combined avg. beam current (μ^+ and μ^-)	[mA]	153	3
Assumed existing cavity type	[-]	LEP2	Scaled LEP2
Cavity frequency	[MHz]	352	1056
Designed bunch phase	[°]	95	275
External Q-factor	[1 x 10 ⁶]	0.33	0.18
Optimal cavity detuning	[kHz]	0.05	0.24

RF parameters for RLA2

Parameter	Unit	RLA2 acceleration	RLA2 linearizer
Beam acceleration time	[µs]	34	
Cavity filling time	[µs]	300	55
RF pulse length	[ms]	0.33	0.09
RF duty factor	[%]	0.16	0.05
FPC peak power	[kW]	3900	2100
FPC average power	[kW]	6.24	1.05
Average total RF power (incl. power distribution losses)	[MW]	4.44	0.12
Average total wall plug power (incl. klystron eff.)	[MW]	6.83	0.19
Number of cavities	[-]	510	98

- All accelerator data was taken from Avni's talk at the 24th HEMAC meeting: <u>https://indico.cern.ch/event/1382603/</u>
- Arc lengths for arcs 3 and 4 seem inconsistent.
 - But are consistent with the plots he showed.
- Parameters for both the linearizer and acceleration cavity seem to be feasible from a powering perspective.
- Transient beam loading needs to be studied in detail.
 - Will depend on the cavity location for each pass (cavities towards the end of the LINAC are more affected by transients than the ones in the middle).
- The design for RLA1 or the Pre-accelerator is not done yet.
- Power sources for 352MHz as well as 1056MHz need to be determined
- \rightarrow LEP2 like as well?

SPONSORED BY THE


Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them. This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA)

Federal Ministry of Education and Research

Energy profile RLA2

Plot from Avnis talk at the 25th HEMAC meeting: <u>https://indico.cern.ch/event/1382603/</u>

RF parameters in the high-energy chain Klystron assumptions

- Klystron and distribution losses are assumed to be the same as for the ILC DKS (Distributed Klystron Scheme) [2]
- In this scheme, the klystrons are located underground next to the accelerator tunnel and close to the cavities
- Repetition rate and fundamental frequency are equal to muon collider RCS chain

Klystron Parameter	Value
Max. power [MW]	10
Wall plug efficiency [%]	65
Repetition rate [Hz]	5
RF pulse length [ms]	1.65
RF duty factor [%]	0.83
Power distribution losses in DKS [%]	32
Output frequency [GHz]	1.3

Thales TH1801, picture from [3], parameter values from [2]

Appendix Generator and reflected current

$$I_g = \left[\frac{V}{2(R/Q)} \left(\frac{1}{Q_{ext}} + \frac{1}{Q_0}\right) + I_{b,DC}F_b\sin(\phi_s)\right] + i\left[I_{b,DC}F_b\cos(\phi_s) - \frac{V\Delta\omega}{\omega(R/Q)}\right]$$
$$I_r = \left[\frac{V}{2(R/Q)} \left(\frac{1}{Q_{ext}} - \frac{1}{Q_0}\right) - I_{b,DC}F_b\sin(\phi_s)\right] - i\left[I_{b,DC}F_b\cos(\phi_s) - \frac{V\Delta\omega}{\omega(R/Q)}\right]$$

Aims when specifying the modifiable parameters

- Set the imaginary part of both formulas to $0 \rightarrow \frac{\Delta \omega_{opt}}{\omega} = \frac{I_{b,DC}F_b \cos(\phi_s)(R/Q)}{V}$
- Set the real part of the reflected current to $0 \rightarrow Q_{ext,opt} = \frac{V}{2I_{b,DC}F_b\sin(\Phi_s)(R/Q)}$

The formulas used were derived in [1]

MuCol

ON Collider

References

[1]: Cavity-Beam-Transmitter Interaction Formula Collection with Derivation: http://cds.cern.ch/record/1323893/files/CERN-ATS-Note-2011-002%20TECH.pdf

[2]: ILC TDR: <u>https://linearcollider.org/files/images/pdf/Acceleratorpart2.pdf</u>

[3]: <u>https://www.desy.de/xfel-beam/mlin_klyst.html</u>