

Technical Benchmarks

Alan Price on behalf of WG2 Patrizia Azzi, Fulvio Piccinini, and Dirk Zerwas

JAGIELLONIAN UNIVERSITY In Kraków

Benchmark Aims

- Main goal is to provide a framework to perform technical test of MC generators for all possible future Higgs factories
- Identify possible deviations between generators *
 - Lead to discussions with WG1 and generator authors
- e+e- study has a long lifetime and MC will through many changes
 - Need a benchmark or standard candle to compare to
- "Lessons learned from LEP2"

CERN 2000-009 20 September 2000 Theoretical Physics and **Experimental Physics**

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN** EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

REPORTS OF THE WORKING GROUPS ON PRECISION CALCULATIONS FOR LEP2 PHYSICS

PROCEEDINGS

Editors: S. Jadach, G. Passarino and R. Pittau

GENEVA 2000

- Babayaga (Latest)
- KKMC (v5 cpp release)
- ♦ Madgraph (3.5.4)
- Sherpa (2.2.15)
- ♦ Whizard (3.1.4)

Versions as of this morning

Alan Price

Key4Hep

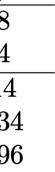
Are all generators on the best "e+e-" release?

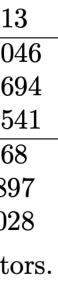
& E.g Sherpa3

Wrapper/Spack issues with KKMC

Does generator tuning require a generator update?

3

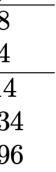

k4GeneratorsConfig

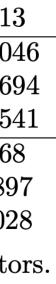

- Python Package developed to run MC
- Run the Python package
- Run the generator in KEY4HEP
- Translate HepMC/LHE into EDM4HEP
- Analyse events
- Read EDM4hep to make a summary

Available in Key4hep

Process	$\sqrt{s} \; (\text{GeV})$	Generator	Cross Section (pb)
$\mu^+\mu^-$	240	MadGraph5_aMC@NLO	3.8332 ± 0.0112228
		Whizard	4.4799 ± 0.0677174
$\mu^+\mu^-$	350	SHERPA-MC	1.7548 ± 0.00297814
		$MadGraph5_aMC@NLO$	1.72647 ± 0.00184034
		Whizard	1.78481 ± 0.00846396
$\gamma\gamma$	91.2	MadGraph5_aMC@NLO	51.941 ± 0.027225
		Babayaga	49.1597 ± 1.10742
		SHERPA	52.1944 ± 0.00260813
$t\overline{t}$	350	MadGraph5_aMC@NLO	0.186168 ± 0.00013204
		Whizard	0.186629 ± 0.00082669
		SHERPA	0.184721 ± 0.00017954
ZH	241.123	MadGraph5_aMC@NLO	0.19851 ± 0.00054668
		Whizard	0.198518 ± 0.0006989
		SHERPA	0.197514 ± 0.0023002

Table 1: Cross section measurements for different processes and generators.


Open Yaml example



Available in Key4hep

Process	$\sqrt{s} \; (\text{GeV})$	Generator	Cross Section (pb)
$\mu^+\mu^-$	240	MadGraph5_aMC@NLO	3.8332 ± 0.0112228
		Whizard	4.4799 ± 0.0677174
$\mu^+\mu^-$	350	SHERPA-MC	1.7548 ± 0.00297814
		$MadGraph5_aMC@NLO$	1.72647 ± 0.00184034
		Whizard	1.78481 ± 0.00846396
$\gamma\gamma$	91.2	MadGraph5_aMC@NLO	51.941 ± 0.027225
		Babayaga	49.1597 ± 1.10742
		SHERPA	52.1944 ± 0.00260813
$t\overline{t}$	350	MadGraph5_aMC@NLO	0.186168 ± 0.00013204
		Whizard	0.186629 ± 0.00082669
		SHERPA	0.184721 ± 0.00017954
ZH	241.123	MadGraph5_aMC@NLO	0.19851 ± 0.00054668
		Whizard	0.198518 ± 0.0006989
		SHERPA	0.197514 ± 0.0023002

Table 1: Cross section measurements for different processes and generators.

Example Results

Process	$\sqrt{s}~({ m GeV})$	Generator	Cross Section (pb)
$\mu^+\mu^-$	240	$MadGraph5_aMC@NLO$	3.8332 ± 0.0112228
		Whizard	4.4799 ± 0.0677174
$\mu^+\mu^-$	350	SHERPA-MC	1.7548 ± 0.00297814
		$MadGraph5_aMC@NLO$	1.72647 ± 0.00184034
		Whizard	1.78481 ± 0.00846396
$\gamma\gamma$	91.2	$MadGraph5_aMC@NLO$	51.941 ± 0.027225
		Babayaga	49.1597 ± 1.10742
		SHERPA	52.1944 ± 0.00260813
$t\bar{t}$	350	$MadGraph5_aMC@NLO$	0.186168 ± 0.000132046
		Whizard	0.186629 ± 0.000826694
		SHERPA	0.184721 ± 0.000179541
ZH	241.123	$MadGraph5_aMC@NLO$	0.19851 ± 0.00054668
		Whizard	0.198518 ± 0.00069897
		SHERPA	0.197514 ± 0.00230028
T 1 1 1 1	~		1

Table 1: Cross section measurements for different processes and generators.

Alan Price

Timeline

ECFA Workshop Oct 9-11 Paris

ECFA Report to RECFA: 12/2024 - 01/2025

Alan Price

Strategy Input March 31, 2025

Timeline

ECFA Workshop Oct 9-11 Paris

Preliminary results ready and presented

ECFA Report to RECFA: 12/2024 - 01/2025

Alan Price

Strategy Input March 31, 2025

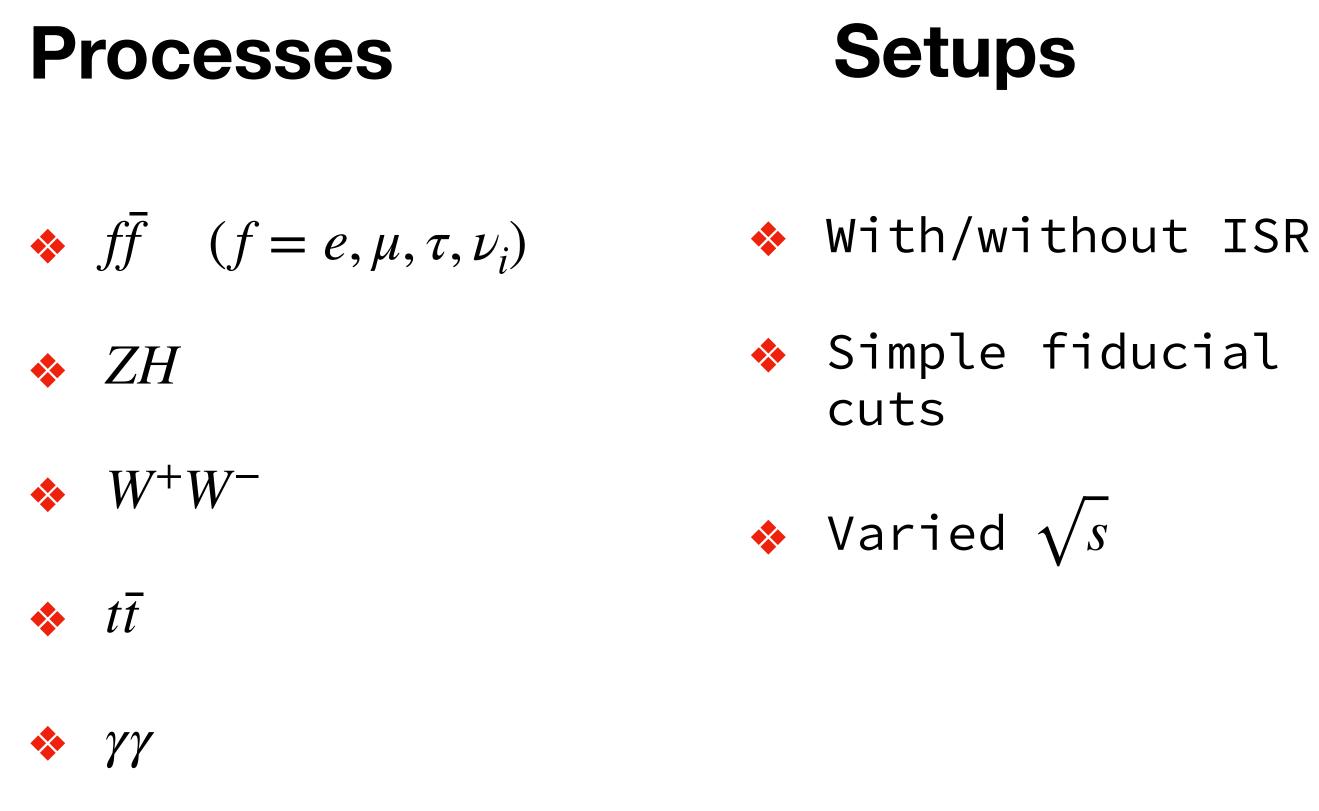
Timeline

ECFA Workshop Oct 9-11 Paris

Preliminary results

ECFA Report to RECFA: 12/2024 - 01/2025

Alan Price


Iterations/Finalisation with authors

Strategy Input March 31, 2025

Next Steps:

Next few days

July: Test Setups Iterate any issues

Alan Price

Distributions

- Angular distributions
- ♦ Invariant mass
- Recoil mass (HZ)
- ♦ PT, ET,...

Sept: Short zoom meeting with MC authors

Processes discussion

