

Universidad de Granada

1

Performance assessment of MCP tubes for the LHCb Upgrade

DT Detectors Physics Meeting 14th June 2011

CERN

Lucía Castillo García

Outline

- Introduction
 - LHCb upgrade. TORCH detector
- Laboratory material
- Picosecond laser tests:
 - Experimental setup
 - Pulse height spectrum Photoelectrons contribution fit
 - Pulse height spectrum SPE efficiency estimation
 - Spatial aspects Intensity scans. Point Spread Function
 - Scans at pixel boundaries SPE efficiency (segmentation)
 - Time jitter distribution Distribution fit
 - Time jitter distribution σ vs μ behavior
 - CFD time walk properties
- Conclusions and plans

Who am I?

- My cities:
 - Barcelona
 - Granada
 - Lausanne
 - Geneva

• Studies:

Sagrada Familia, Barcelona

Alhambra, Granada

- Physics Degree: Universidad de Barcelona, Universidad de Granada.
- Erasmus: École Polytechnique Fédérale de Lausanne (1 year)
- Technical student: CERN (8 months)
- Next destination...

- **TORCH** (Time Of internally Reflected CHerenkov light) particle identification system at low momentum (<10 GeV/c)
- LHCb upgrade framework
- Transverse dimension of plane to be instrumented is ~ 5 × 6 m² → replace
 Aerogel at z = 12 m

Lucía Castillo García - DT Detector Physics meeting - 14th June 2011

- Cherenkov photons detection from 1 cm-thick quartz plane
- Photons propagate by total internal reflection to the edge of the plane and are focused onto an array of micro-channel plate photon detectors, where their arrival would be timed
- Need to measure *angles* of photons, so their **path length can be** reconstructed
- To measure the angle in the longitudinal direction (θz) we use a focusing block, to convert angle of the photon into position on the photodetector

Lucía Castillo García - DT Detector Physics meeting - 14th June 2011

- Requires:
 - Development of photon detectors with very fine anode segmentation (8x128 pixels)
 - Time spread better than 50 ps for single photons
 - ~ 1 mrad precision required on the angles in both transverse planes
 - coarse segmentation (~ 1cm) is sufficient for the transverse direction (θx)
- Anode pad structure can in principle be adjusted according to need
 - Smearing of photon propagation time due to photodetector granularity ~40 ps
 - Assuming an intrinsic arrival time measurement resolution per p.e. of 50 ps the **total resolution per detected p.e. is 40 \oplus 50 \sim 70 ps**, as required
- Micro-channel plate (MCP) photodetectors are currently the best choice for fast timing of single photons

Laboratory material

- Photon detectors:
 - Two 8x8 channels MCP-PMTs (Burle)
- XP85012/A1 specifications:
 - MCP-PMT planacon
 - 8x8 array, 5.9/6.5 mm size/pitch

- 25 μm pore diameter, chevron configuration (2), 55% open-area ratio
- MCP gain up to 10⁶
- Large gaps:
 - PC-MCPin: ~ 4mm
 - MCPout-anode: ~ 4mm
- 53 mm x 53 mm active area, 59 mm x 59 mm total area \rightarrow 80% coverage ratio
- Total input active surface ratio ≤ 44%
- Bialkali photocathode
- Rise time 600 ps, pulse width 1.8 ns

Laboratory material

- Pulsed (~20ps) blue (405nm) laser (PiLas)
- Readout electronics:
 - Multi-channel analyzers (MCA)
 - Spectroscopy charge preamplifier and shaping amplifiers
 - Standard NIM electronics
 - Fast single-channel NIM electronics (ORTEC)
 - Fast timing amplifier with Constant Fraction Discriminator (CFD)
 - Time-to-Amplitude Converter (TAC)

Blue laser tests – Experimental setup

MCP tests – experimental setup

MCP tests – experimental setup photos (2)

Blue laser tests – Pulse height spectrum. Photoelectrons contribution fit

- $HV = -2450V \rightarrow bleeder chain 2:10:2 (-350V : -1750V : -350V)$
- Gain: 5 10⁵
- μ~0.51
- Fitted accordingly to **Poisson distribution** ٠

Blue laser tests – Pulse height spectrum. SPE efficiency estimation

- For **1 photoelectron**:

$$P_{\mu}(1) = \frac{\mu}{1!} e^{-\mu} = \frac{A_1 \sigma_1 \sqrt{2\pi}}{total \, surface}$$

 $< Q_{input}(1 \ photoelectron) > = 110.81 \ fC$

- Input range 0 \rightarrow -150 mV (low gain):
 - 3 CFD thresholds:
 -1.125 mV → Q ~ 22.5 fC
 -2.025 mV → Q ~ 40.5 fC
 -2.7 mV → Q ~ 54 fC
- $100 fC \implies 221.1 channels$
 - **3 PHS thresholds**:
 49.75 channels
 89.55 channels
 119.36 channels

Blue laser tests – Spatial aspects. Intensity scans. Point Spread Function

- 1st hypothesis:
 - Periodic oscillation could be due to the number of affected pores on the second MCP

Lucía Castillo García - DT Detector Physics meeting - 14th June 2011

Blue laser tests – Scans at pixel boundaries. SPE efficiency

- Scans for different laser alignments on the pixel
- Pulse height measurements:
 - ND 2+2+1 → μ ~ 0.5 unchanged (see next slide)
 - Gain ~ 8 10⁵ electrons
 - Efficiency estimation
- Time jitter distributions:
 - Timing amplifier input range: 0 → -30 mV
 - CFD threshold: -70 mV \rightarrow -1.2 mV
 - Time resolution
 - By fitting the leading edge
- Importance on anode readout segmentation (8x128 pixels)
- Don't want to lose on timing performance

CFD threshold: -70 mV \rightarrow input threshold: -1.2 mV = 24 fC \rightarrow PHS threshold: 53 channels CFD threshold: -120 mV \rightarrow input threshold: -2.08 mV = 42 fC \rightarrow PHS threshold: 92 channels CFD threshold: -160 mV \rightarrow input threshold: -2.64 mV = 53 fC \rightarrow PHS threshold: 117 channels

Blue laser tests – Scans at pixel boundaries. SPE efficiency

0

500

1000

channels

1500

2000

	σ t (Y direction)	σ t (X direction)
Centre	~ 49 ps	~ 43 ps
Edge	~ 45 ps	~ 51 ps
Corner	~ 50 ps	~ 55 ps

- Depending on how the distribution is fitted (see next slides)

Blue laser tests – Time jitter distribution. Distribution fit

-Shoulder due to a second laser pulse

- 60% TUNE asymmetric pulse shape
- Low statistics 2nd laser pulse
- Second pulse as we increase LD TUNE
- 2nd relaxation oscillation clearly seen ~

150 ± 50 ps \rightarrow shoulder in measurements

Blue laser tests – Time jitter distribution. σ vs μ behavior

• Many contributions to time jitter:

$$\sigma = \sqrt{\sigma_{MCP}^2 + \sigma_{synch}^2 + \sigma_{laserpulse}^2 + \sigma_{channel}^2 + \sigma_{Blue \ light}^2 + \sigma_{electronics}^2 + \dots}$$

- MCP intrinsic time jitter
- Laser synchronization pulse (~ 2-3 ps)
- Optimal laser pulse width (~ 20 ps FWHM)
- MCA channel resolution (6.25 ps)
- Blue light (PE emission velocity spectrum)
- Slope signal (proportional # phe) vs CFD time jitter and residual time walk (signal amplitudes)

2nd planacon (2 gaussians fit) thresh. -1.125 mV thresh.-2.025 mV thresh.-2.7 mV 65 fit thresh. -1.125 mV 60 fit thresh. -2.025 mV 55 50 (sd) 6 40 35 30 25 20 0 2 6 8 10 μ

$$B^{-}4 \rightarrow \sigma_{other} \sim 30 \text{ ps}$$

 $\sim 15 \text{ nc}$

Blue laser tests – CFD time walk properties

- How does CFD work?
 - Based on zero-crossing techniques
- Explain timing performance and see time jitter contribution
- Large amplitudes:

CFD -

+walk ightarrow earlier / -walk ightarrow later

- Smaller amplitudes:

+walk \rightarrow later / -walk \rightarrow earlier

Measured with a pulse width of 300 ps FWHM.

walk contribution to time

Amplitude (mV)

+ residual

- residual

Walk

fluctuation

results in

time jitter

input charge

iitter

threshold

walk

walk

Blue laser tests – CFD time walk properties

- High gain. Timing amplifier input range (0 \rightarrow -30 mV)

Conclusions and plans

- Lab tests:
 - MCP operating parameters & calibration under control
 - Achieved an excellent timing resolution O(<40 ps) with estimated E of ~ 90% for single photons on pixel centre.
 - Timing performance similar on pixel boundaries with expected efficiency drop.
 - Better understanding of laser pulse contribution to timing distributions.
 - Detailed studies of residual time walk. Data analysis on-going.
- Poster presentation on NDIP Conference (4-8 July 2011) in Lyon, France