How to find a needle in a Haystack?

Ultra Rare Kaon Decays

$K \rightarrow \pi v v$: theoretically pure and almost unexplored experimentally

- [1] J.Brod, M.Gorgahn, and E.Stamou, Phys. Rev. D83, 034030 (2011)
- [2] CKM 08 Procs.
- [3] KEK E391 <u>arXiV:0712.4164v2</u>

This experimental effort allows to determine the CKM parameter $|V_{td}|$ to $\leq 10\%$ accuracy.

The Problem is the Background

Target Signal / Noise

Decay Mode	ay/year] 55 evt/year	
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]		
$K^+ \to \pi^+ \pi^0 [\eta_{\pi^0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)	
K⁺→μ⁺ν	2.2%	
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%	
Other 3 – track decays	≤1.5%	
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%	
Κ⁺→μ⁺νγ	~0.7 %	
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible	
Expected background	≤13.5% (≤17%)	

(2007 estimation)

Na62 Beam

SPS primary **p** at 400 Gev/c

- High intensity 1.1*10¹² protons/eff. s on target

> Secondary Beam -> unseparated hadrons $(\pi / K / p)$

- High momentum Beam 75±0.75 GeV/c
- High intensity hadron beam (≈ 750 MHz) with an optimum content of K⁺ (≈6%)

Leads to:

- 4.5 MHz of Kaon decays in fiducial region
- Ratio (K⁺ decays / Hadron Flux) $\approx 6\%$
- > Expected signal: K⁺ -> $\pi^+ \nu \overline{\nu}$ events:
 - 380 decays in fiducial region /y (1y=100d, 60% eff.)
 - ≈ 55 detected K⁺ -> $\pi^+ \nu \overline{\nu}$ events/y

Key Detector Requirements

Excellent timing:

- To associate outgoing π with parent K
- To suppress decays containing $\,\mu's\,$ or $\gamma's$ in the 1^{st} level trigger
- > Particle Identification for γ 's, μ 's, π 's, K's
- ➢ Hermetic Vetoing of photon's in the acceptance (0 to 50mrad); Inefficiency ≤ 10⁻⁴
- > Ultra light tracking detectors installed in vacuum
 - To reduce fake events from beam gas collisions
 - To reduce multiple scattering

Redundancy

K⁺ -> π + ν $\overline{\nu}$ Events

Total Length 270m

Na62 Detectors

Overview

Total Length 270m

Particle Rates

4.5 10^{12} K⁺ decays/ year in fiducial region

The muons originating from π^{\pm} and K[±] decays (produced at the target) generate a significant and permanent particle flux for the detector (μ "Halo").

Giga TRACKER GTK

GTK / Giga Tracker

3 stations of Si pixel detectors Pixel size: 300 x 300 μm² or 300 x 400 μn 18'000 pixels/ station 54'000 pixels grand total Thickness: 300 -500 μm = 200(sensor) + 100(readout) + Cooling

- 0.5% of X₀ (per Station)
- Active area $\approx 60 (X) * 27 (Y) mm^2$
- Divided in 10 read-out chips

Beam Conditions:

- Overall Rate 750MHz
- In beam centre 140kHz/pixel

Meaures precisely Kaon

GTK2

27 mm

- Time (σ_t ≈ 200ps per station)
- Direction ($\sigma_{dx,dy} \approx 0.016$ mrad)
- Momentum (ΔP/P < 0.4%)

GTK: Test Beam Analysis

From Massimiliano FIORINI

- Test beam results confirms a time resolution of better than 200 ps per hit for sensor bias voltages higher than 300 V.
- Time-walk correction and alignment procedures have been validated with real data
- Clear dependence of time resolution on sensor bias voltage
- The operation at 300 V overdepletion is mandatory
- Paper on test-beam results under preparation

Photon Vetos

One of the most difficult Background:

Veto Hermiticity

- suppression of dominant background $K^+ \rightarrow \pi^+ \pi^0$
- Inefficiency for rejection of the π^0 must be at the level of 10^{-8}
- Within acceptance inefficiency for photons <10⁻⁴ (for LKR <10⁻⁵)

Kinematics of $K^+ \rightarrow \pi^+ \pi^0$

$\succ \pi^+\pi^0$ generated

- $-105 < Z_{vtx} < 165 m$
- 15 < P_{π} < 35 GeV
- $\pi \text{ in detector} \\ \text{acceptance}$

	SAC	IRC	LKR	LAV	MISS
SAC	0	0	1.66	1.26 x 10 ⁻²	2.08 x 10 -4
IRC		0	8.17	0.40	5.65 x 10 ⁻³
LKR			70.35	19.08	0.21
LAV				0	0
MISS					0

Photon Acceptance [%] for $\pi^+\pi^0$

Photon Energy

MC Studies from Spasimir BALEV

14/06/2011 - FH

Detector Physics Meeting

Large Angle Veto

Lead-Glass Crystals with attached PMT From former OPAL EM calorimeter.

All in all 12 Stations 11 in vacuum 1 behind the RICH

Frontend Electronics

14/06/2011 - FH

Detector Physics Meeting ENDCUP

Large Angle Veto

14/06/2011 - FH

Liq. Krypton Calorimeter

(the Jewel Calorimeter from NA48)

Liquid Krypton Calorimeter

Homogenous noble gas calorimeter (9'000 ltr. liquid Krypton)

Excellent energy, time and space resolution: $\sigma_F/E = 3.2\%/VE + 9\%/E + 0.42\%$; $\sigma_t < 500$ ps

New readout for NA62: from 10kHz to 1MHz

Small Angle Veto's

- 1. The IRC covering the region around the inner radius of the Liquid Krypton Calorimeter.
- 2. The SAC situated behind the experimental cavern in the prolongation of the beam axis covering the angular region down 0 degrees.

STRAW Tracker

The Straw Tracker

Detector Performance

Kinematical rejection relies on:

- > π Momentum resolution $\sigma(P)/P < 1\%$
- $\succ \pi$ Angular resolution : < 60 µrad
- ➤ Decay Vertex Extrapolation σ(CDA)≈ 1mm

Detector Requirements

- ➤ Ultra light (≈ 0.1 % of X₀ per view) (no beam windows and no surrounding gas)
- Max. Rate 0.5 MHz/Straw
- ➢ High accuracy (130µm per View) and high efficiency

Straw Tracker Layout

4 views in each Station

- Straws: 2.1m long and ϕ_i =9.8mm; Installed in vacuum;
- Straw Material: 50 nm Cu + 20 nm Au on 36 μm of Mylar
- Total 7168 Straws (4x4x4x112)

Straw Chamber Assembly

The straws are installed in horizontal position, Pretension is 1.5 kg, than glued vertically

DT activity (Hans D.) can be visited in B154....

Straw Straightness + Welding NA62

Ultra sonic Weld

RICH Detector

A very challenging RICH is needed for NA62:

- $-(\mu/\pi)$ separation between 15 and 35 GeV/c
- μ suppression factor of at least 100
- Time resolution of 100 ps
- Provide Level 0 trigger for charged tracks

Design Validated in Prototype (operated 2007-2009)

- 17m long Radiator , 1 mirror, and 400 PM's (20% of final).
- Intensively testes

Schematic Visualisation

RICH Mirrors

Mirror Assembly

- 18 hexagonal mirrors
- 2 half mirrors around the beam pipe.
- Online Alignment:

The inclination of the 18 hexagonal mirrors is remotely adjustable using piezomicrometric actuators

Mirror Parameters + Quality:

- Spherical mirrors f= 17±0.1 m
- Reflectivity > 90% (195 650nm)
- $D_0 \leq 4mm$ (circle which collects 90% of the reflected light.)

Two functions:

- Reduce L0 trigger by factor 20
- 10 MHz Muon rate + coincidence window \leq 2.5ns => dead time $\leq 2.5\%$
- > Offline:

MUV Muon Veto

► MUV 1 + 2

- iron/scintillator sandwich
- 24(MUV1) and 22(MUV2) detection layers
- Alternating horizontal and vertical scintillator strips
- PMT's
- MUV3 (trigger layer)
 - Fast muon trigger after 80 cm of iron
 - Design: Tiles scintillators, air light guide, 2 PMT 21 cm behind.

Air light guide

Conclusions

NA62 will build a very demanding detector to measure extremely rare K decays.

> This entails:

- To build 7 new sub-detectors: (GTK, STRAW Tracker, RICH, LAV, CHANTI, IRC/SAC + MUV1+3)
- Renovate 4 existing detectors: (CEDAR,LKR, CHOD, HAC)
- Re-use large parts of the NA48 infrastructure

> Timescale:

- Technical Run in Fall 2012 (partially complete detector)
- Physics Run after the LS1

Thank You

CHOD Detector

Charged Hodoscope

NA48 Charged Hodoscope

Will be used for 2012 Run / Replacement foreseen afterwards

Performance:

Time resolution σ_t = 0.2-0.3 ns (offline) Number of detected pe/MIP = ??

Detector Parameters:

- 2 planes X-Y (2 x 64 channels)
- Scintillator BC408 (att. L≈1.5m) decay time 2.2ns
- Slab size (60-121) x 6.5 (9.9) x 2 cm; plastic light guides
- PMT's Philips XP2262B
 - $X_0 \approx 10\%$

 \triangleright

Limitations for NA62:

- Expected Rate > 1MHz in some channels
- X-y matching difficult bco ghost hits -> may impact σ_t
- Can't be used to cut multi track events (bco. ghost hits)
 - Geometrical acceptance slightly to big.

Straw Tracker

Test beam Results

Resolution versus Radius

2000

NA62 Beam & Detectors

Photo-detectors

Photomultiplier

- Hamamatsu R7400 U03
- Metal housing, 8 dyn
- 185 nm 650 nm, 420 nm peak sensitivity
- Gain: 7 x 10⁵ (typ.)
- Transit time: 5.4 ns (Transit time spread: 0.28 ns)

Light Collection + Window:

Quartz

Window

Photomultiplier Plane

- 2x 1000 PMT's
- PMT pitch 18mm
- All services mounted on one flange.

Photos: M. Lenti

PMT position

CEDAR

CEDAR: existing Cherenkov counter at CERN

Adapted to NA62 need : H₂ Gas instead of Nitrogen, new photo detectors and electronics

> Why the CEDAR ?

- Essential to make sure incoming particle is kaon (6% of total flux)
- Kaon tagging will suppress the background:
 - due to scattering of beam particles in the residual gas (vacuum);
 - due to beam halo entering the vacuum tank;
 - due to beam pions decaying in the vacuum tank.

